*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> f90/product (3)              
Title
Content
Arch
Section
 

Contents


PRODUCT(3I)					       Last changed: 1-6-98

NAME    [Toc]    [Back]

     PRODUCT - Forms the product of array elements

SYNOPSIS    [Toc]    [Back]

     PRODUCT ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

     PRODUCT ([ARRAY=]array [,[MASK=]mask])

IMPLEMENTATION    [Toc]    [Back]

     UNICOS, UNICOS/mk,	and IRIX systems

STANDARDS    [Toc]    [Back]

     Fortran 90

DESCRIPTION    [Toc]    [Back]

     The PRODUCT intrinsic function forms the product of all the elements
     of	array along dimension dim corresponding	to the true elements of
     mask.  It accepts the following arguments:

     array     Must be of type integer,	real, or complex.  It must not be
	       scalar.

     dim       Must be scalar and of type integer with a value in the range
	       1 <= dim	<= n, where n is the rank of array.  The
	       corresponding actual argument must not be an optional dummy
	       argument.  This function	does a check on	dim when present.

     mask      Must be of type logical and must	be conformable with array.

     PRODUCT is	a transformational intrinsic function.	The name of this
     intrinsic cannot be passed	as an argument.

RETURN VALUES    [Toc]    [Back]

     The result	has the	same type and type parameter as	array.	The result
     is	scalar if dim is absent	or array has rank one; otherwise, the
     result is an array	of rank	n-1 of shape
     (d	, d , ..., d	 , d	 , ...,	d ),
       1   2	    dim-1   dim+1	 n
     where (d ,	d , ..., d )
	     1	 2	  n
     is	the shape of array.

     The result	of PRODUCT(array) has a	value equal to the product of all
     the elements of array or has the value 1 if array has size	0.

     The result	of PRODUCT(array,MASK=mask) has	a value	equal to the
     product of	the elements of	array corresponding to the true	elements of
     mask or has the value 1 if	there are no true elements.

     If	array has rank one, PRODUCT(array,dim[,mask]) has a value equal	to
     that of PRODUCT(array[,MASK=mask]).  Otherwise, the value of element
     (s	, s , ..., s	 , s	 , ...,	s )
       1   2	    dim-1   dim+1	 n
     of	PRODUCT(array,dim[,mask]) is equal to
     PRODUCT(array (s ,	s , ..., s     , : , s	   , ..., s ))
		     1	 2	  dim-1	      dim+1	   n
     [,	MASK=mask (s , s , ...,	s     ,	: , s	  , ..., s )]).
		    1	2	 dim-1	     dim+1	  n

EXAMPLES    [Toc]    [Back]

     Example 1:	 The value of PRODUCT((/ 1, 2, 3 /)) is	6.

     Example 2:	 PRODUCT(C, MASK = C .GT. 0.0) forms the product of the
     positive elements of C.

     Example 3:	 B is the following array:

	| 1 3 5	|
	| 2 4 6	|

     PRODUCT(B,	DIM = 1) is [2,	12, 30], and PRODUCT(B,	DIM = 2) is [15,
     48].

SEE ALSO    [Toc]    [Back]

      
      
     Intrinsic Procedures Reference Manual, publication	SR-2138, for the
     printed version of	this man page.

PRODUCT(3I)					       Last changed: 1-6-98

NAME    [Toc]    [Back]

     PRODUCT - Forms the product of array elements

SYNOPSIS    [Toc]    [Back]

     PRODUCT ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

     PRODUCT ([ARRAY=]array [,[MASK=]mask])

IMPLEMENTATION    [Toc]    [Back]

     UNICOS, UNICOS/mk,	and IRIX systems

STANDARDS    [Toc]    [Back]

     Fortran 90

DESCRIPTION    [Toc]    [Back]

     The PRODUCT intrinsic function forms the product of all the elements
     of	array along dimension dim corresponding	to the true elements of
     mask.  It accepts the following arguments:

     array     Must be of type integer,	real, or complex.  It must not be
	       scalar.

     dim       Must be scalar and of type integer with a value in the range
	       1 <= dim	<= n, where n is the rank of array.  The
	       corresponding actual argument must not be an optional dummy
	       argument.  This function	does a check on	dim when present.

     mask      Must be of type logical and must	be conformable with array.

     PRODUCT is	a transformational intrinsic function.	The name of this
     intrinsic cannot be passed	as an argument.

RETURN VALUES    [Toc]    [Back]

     The result	has the	same type and type parameter as	array.	The result
     is	scalar if dim is absent	or array has rank one; otherwise, the
     result is an array	of rank	n-1 of shape
     (d	, d , ..., d	 , d	 , ...,	d ),
       1   2	    dim-1   dim+1	 n
     where (d ,	d , ..., d )
	     1	 2	  n
     is	the shape of array.

     The result	of PRODUCT(array) has a	value equal to the product of all
     the elements of array or has the value 1 if array has size	0.

     The result	of PRODUCT(array,MASK=mask) has	a value	equal to the
     product of	the elements of	array corresponding to the true	elements of
     mask or has the value 1 if	there are no true elements.

     If	array has rank one, PRODUCT(array,dim[,mask]) has a value equal	to
     that of PRODUCT(array[,MASK=mask]).  Otherwise, the value of element
     (s	, s , ..., s	 , s	 , ...,	s )
       1   2	    dim-1   dim+1	 n
     of	PRODUCT(array,dim[,mask]) is equal to
     PRODUCT(array (s ,	s , ..., s     , : , s	   , ..., s ))
		     1	 2	  dim-1	      dim+1	   n
     [,	MASK=mask (s , s , ...,	s     ,	: , s	  , ..., s )]).
		    1	2	 dim-1	     dim+1	  n

EXAMPLES    [Toc]    [Back]

     Example 1:	 The value of PRODUCT((/ 1, 2, 3 /)) is	6.

     Example 2:	 PRODUCT(C, MASK = C .GT. 0.0) forms the product of the
     positive elements of C.

     Example 3:	 B is the following array:

	| 1 3 5	|
	| 2 4 6	|

     PRODUCT(B,	DIM = 1) is [2,	12, 30], and PRODUCT(B,	DIM = 2) is [15,
     48].

SEE ALSO    [Toc]    [Back]

      
      
     Intrinsic Procedures Reference Manual, publication	SR-2138, for the
     printed version of	this man page.

[ Back ]
 Similar pages
Name OS Title
sum IRIX Sums array elements
glarrayelementext IRIX specify the array elements used to render a vertex
size IRIX Returns the total number of elements in an array
count IRIX Counts the number of true array elements
slaed4 IRIX rank-one modification to a diagonal matrix whose elements are given in the array d, and that D(i) < D(j) for i
dlaed4 IRIX rank-one modification to a diagonal matrix whose elements are given in the array d, and that D(i) < D(j) for i
slaed5 IRIX modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal elements in the array D are assumed to s
dlaed5 IRIX modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal elements in the array D are assumed to s
lreplace IRIX Replace elements in a list with new elements
unpack IRIX Unpacks an array of rank one into an array under control of a mask
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service