*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlaed5 (3)              
Title
Content
Arch
Section
 

Contents


DLAED5(3F)							    DLAED5(3F)


NAME    [Toc]    [Back]

     DLAED5 - subroutine computes the I-th eigenvalue of a symmetric rank-one
     modification of a 2-by-2 diagonal matrix	diag( D	) + RHO	 The diagonal
     elements in the array D are assumed to satisfy   D(i) < D(j) for i	< j

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAED5(	I, D, Z, DELTA,	RHO, DLAM )

	 INTEGER	I

	 DOUBLE		PRECISION DLAM,	RHO

	 DOUBLE		PRECISION D( 2 ), DELTA( 2 ), Z( 2 )

PURPOSE    [Toc]    [Back]

     This subroutine computes the I-th eigenvalue of a symmetric rank-one
     modification of a 2-by-2 diagonal matrix

     We	also assume RHO	> 0 and	that the Euclidean norm	of the vector Z	is
     one.

ARGUMENTS    [Toc]    [Back]

     I	    (input) INTEGER
	    The	index of the eigenvalue	to be computed.	 I = 1 or I = 2.

     D	    (input) DOUBLE PRECISION array, dimension (2)
	    The	original eigenvalues.  We assume D(1) <	D(2).

     Z	    (input) DOUBLE PRECISION array, dimension (2)
	    The	components of the updating vector.

     DELTA  (output) DOUBLE PRECISION array, dimension (2)
	    The	vector DELTA contains the information necessary	to construct
	    the	eigenvectors.

     RHO    (input) DOUBLE PRECISION
	    The	scalar in the symmetric	updating formula.

     DLAM   (output) DOUBLE PRECISION
	    The	computed lambda_I, the I-th updated eigenvalue.
DLAED5(3F)							    DLAED5(3F)


NAME    [Toc]    [Back]

     DLAED5 - subroutine computes the I-th eigenvalue of a symmetric rank-one
     modification of a 2-by-2 diagonal matrix	diag( D	) + RHO	 The diagonal
     elements in the array D are assumed to satisfy   D(i) < D(j) for i	< j

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAED5(	I, D, Z, DELTA,	RHO, DLAM )

	 INTEGER	I

	 DOUBLE		PRECISION DLAM,	RHO

	 DOUBLE		PRECISION D( 2 ), DELTA( 2 ), Z( 2 )

PURPOSE    [Toc]    [Back]

     This subroutine computes the I-th eigenvalue of a symmetric rank-one
     modification of a 2-by-2 diagonal matrix

     We	also assume RHO	> 0 and	that the Euclidean norm	of the vector Z	is
     one.

ARGUMENTS    [Toc]    [Back]

     I	    (input) INTEGER
	    The	index of the eigenvalue	to be computed.	 I = 1 or I = 2.

     D	    (input) DOUBLE PRECISION array, dimension (2)
	    The	original eigenvalues.  We assume D(1) <	D(2).

     Z	    (input) DOUBLE PRECISION array, dimension (2)
	    The	components of the updating vector.

     DELTA  (output) DOUBLE PRECISION array, dimension (2)
	    The	vector DELTA contains the information necessary	to construct
	    the	eigenvectors.

     RHO    (input) DOUBLE PRECISION
	    The	scalar in the symmetric	updating formula.

     DLAM   (output) DOUBLE PRECISION
	    The	computed lambda_I, the I-th updated eigenvalue.


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
slaed4 IRIX rank-one modification to a diagonal matrix whose elements are given in the array d, and that D(i) < D(j) for i
dlaed4 IRIX rank-one modification to a diagonal matrix whose elements are given in the array d, and that D(i) < D(j) for i
dlasq1 IRIX matrix with diagonal D and off-diagonal E
slasq1 IRIX matrix with diagonal D and off-diagonal E
claset IRIX initialize a 2-D array A to BETA on the diagonal and ALPHA on the offdiagonals
zlaset IRIX initialize a 2-D array A to BETA on the diagonal and ALPHA on the offdiagonals
dlaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
slaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
ztrexc IRIX reorder the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T with row i
ctrexc IRIX reorder the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T with row i
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service