SLAED5(3F) SLAED5(3F)
SLAED5 - subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal
elements in the array D are assumed to satisfy D(i) < D(j) for i < j
SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
INTEGER I
REAL DLAM, RHO
REAL D( 2 ), DELTA( 2 ), Z( 2 )
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
We also assume RHO > 0 and that the Euclidean norm of the vector Z is
one.
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
The vector DELTA contains the information necessary to construct
the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigenvalue.
SLAED5(3F) SLAED5(3F)
SLAED5 - subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal
elements in the array D are assumed to satisfy D(i) < D(j) for i < j
SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
INTEGER I
REAL DLAM, RHO
REAL D( 2 ), DELTA( 2 ), Z( 2 )
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
We also assume RHO > 0 and that the Euclidean norm of the vector Z is
one.
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
The vector DELTA contains the information necessary to construct
the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigenvalue.
PPPPaaaaggggeeee 1111 [ Back ]
|