*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zlaset (3)              
Title
Content
Arch
Section
 

Contents


ZLASET(3F)							    ZLASET(3F)


NAME    [Toc]    [Back]

     ZLASET - initialize a 2-D array A to BETA on the diagonal and ALPHA on
     the offdiagonals

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLASET(	UPLO, M, N, ALPHA, BETA, A, LDA	)

	 CHARACTER	UPLO

	 INTEGER	LDA, M,	N

	 COMPLEX*16	ALPHA, BETA

	 COMPLEX*16	A( LDA,	* )

PURPOSE    [Toc]    [Back]

     ZLASET initializes	a 2-D array A to BETA on the diagonal and ALPHA	on the
     offdiagonals.

ARGUMENTS    [Toc]    [Back]

     UPLO    (input) CHARACTER*1
	     Specifies the part	of the matrix A	to be set.  = 'U':	Upper
	     triangular	part is	set. The lower triangle	is unchanged.  = 'L':
	     Lower triangular part is set. The upper triangle is unchanged.
	     Otherwise:	 All of	the matrix A is	set.

     M	     (input) INTEGER
	     On	entry, M specifies the number of rows of A.

     N	     (input) INTEGER
	     On	entry, N specifies the number of columns of A.

     ALPHA   (input) COMPLEX*16
	     All the offdiagonal array elements	are set	to ALPHA.

     BETA    (input) COMPLEX*16
	     All the diagonal array elements are set to	BETA.

     A	     (input/output) COMPLEX*16 array, dimension	(LDA,N)
	     On	entry, the m by	n matrix A.  On	exit, A(i,j) = ALPHA, 1	<= i
	     <=	m, 1 <=	j <= n,	i.ne.j;	A(i,i) = BETA ,	1 <= i <= min(m,n)

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).
ZLASET(3F)							    ZLASET(3F)


NAME    [Toc]    [Back]

     ZLASET - initialize a 2-D array A to BETA on the diagonal and ALPHA on
     the offdiagonals

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLASET(	UPLO, M, N, ALPHA, BETA, A, LDA	)

	 CHARACTER	UPLO

	 INTEGER	LDA, M,	N

	 COMPLEX*16	ALPHA, BETA

	 COMPLEX*16	A( LDA,	* )

PURPOSE    [Toc]    [Back]

     ZLASET initializes	a 2-D array A to BETA on the diagonal and ALPHA	on the
     offdiagonals.

ARGUMENTS    [Toc]    [Back]

     UPLO    (input) CHARACTER*1
	     Specifies the part	of the matrix A	to be set.  = 'U':	Upper
	     triangular	part is	set. The lower triangle	is unchanged.  = 'L':
	     Lower triangular part is set. The upper triangle is unchanged.
	     Otherwise:	 All of	the matrix A is	set.

     M	     (input) INTEGER
	     On	entry, M specifies the number of rows of A.

     N	     (input) INTEGER
	     On	entry, N specifies the number of columns of A.

     ALPHA   (input) COMPLEX*16
	     All the offdiagonal array elements	are set	to ALPHA.

     BETA    (input) COMPLEX*16
	     All the diagonal array elements are set to	BETA.

     A	     (input/output) COMPLEX*16 array, dimension	(LDA,N)
	     On	entry, the m by	n matrix A.  On	exit, A(i,j) = ALPHA, 1	<= i
	     <=	m, 1 <=	j <= n,	i.ne.j;	A(i,i) = BETA ,	1 <= i <= min(m,n)

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
dlaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
slaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
dlaed5 IRIX modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal elements in the array D are assumed to s
slaed5 IRIX modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal elements in the array D are assumed to s
zgegv IRIX B, the generalized eigenvalues (alpha, beta), and optionally,
cgegv IRIX B, the generalized eigenvalues (alpha, beta), and optionally,
slarfg IRIX generate a real elementary reflector H of order n, such that H * ( alpha ) = ( beta ), H' * H = I
zlarfg IRIX generate a complex elementary reflector H of order n, such that H' * ( alpha ) = ( beta ), H' * H = I
dlarfg IRIX generate a real elementary reflector H of order n, such that H * ( alpha ) = ( beta ), H' * H = I
clarfg IRIX generate a complex elementary reflector H of order n, such that H' * ( alpha ) = ( beta ), H' * H = I
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service