*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/claset (3)              
Title
Content
Arch
Section
 

Contents


CLASET(3F)							    CLASET(3F)


NAME    [Toc]    [Back]

     CLASET - initialize a 2-D array A to BETA on the diagonal and ALPHA on
     the offdiagonals

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLASET(	UPLO, M, N, ALPHA, BETA, A, LDA	)

	 CHARACTER	UPLO

	 INTEGER	LDA, M,	N

	 COMPLEX	ALPHA, BETA

	 COMPLEX	A( LDA,	* )

PURPOSE    [Toc]    [Back]

     CLASET initializes	a 2-D array A to BETA on the diagonal and ALPHA	on the
     offdiagonals.

ARGUMENTS    [Toc]    [Back]

     UPLO    (input) CHARACTER*1
	     Specifies the part	of the matrix A	to be set.  = 'U':	Upper
	     triangular	part is	set. The lower triangle	is unchanged.  = 'L':
	     Lower triangular part is set. The upper triangle is unchanged.
	     Otherwise:	 All of	the matrix A is	set.

     M	     (input) INTEGER
	     On	entry, M specifies the number of rows of A.

     N	     (input) INTEGER
	     On	entry, N specifies the number of columns of A.

     ALPHA   (input) COMPLEX
	     All the offdiagonal array elements	are set	to ALPHA.

     BETA    (input) COMPLEX
	     All the diagonal array elements are set to	BETA.

     A	     (input/output) COMPLEX array, dimension (LDA,N)
	     On	entry, the m by	n matrix A.  On	exit, A(i,j) = ALPHA, 1	<= i
	     <=	m, 1 <=	j <= n,	i.ne.j;	A(i,i) = BETA ,	1 <= i <= min(m,n)

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).
CLASET(3F)							    CLASET(3F)


NAME    [Toc]    [Back]

     CLASET - initialize a 2-D array A to BETA on the diagonal and ALPHA on
     the offdiagonals

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLASET(	UPLO, M, N, ALPHA, BETA, A, LDA	)

	 CHARACTER	UPLO

	 INTEGER	LDA, M,	N

	 COMPLEX	ALPHA, BETA

	 COMPLEX	A( LDA,	* )

PURPOSE    [Toc]    [Back]

     CLASET initializes	a 2-D array A to BETA on the diagonal and ALPHA	on the
     offdiagonals.

ARGUMENTS    [Toc]    [Back]

     UPLO    (input) CHARACTER*1
	     Specifies the part	of the matrix A	to be set.  = 'U':	Upper
	     triangular	part is	set. The lower triangle	is unchanged.  = 'L':
	     Lower triangular part is set. The upper triangle is unchanged.
	     Otherwise:	 All of	the matrix A is	set.

     M	     (input) INTEGER
	     On	entry, M specifies the number of rows of A.

     N	     (input) INTEGER
	     On	entry, N specifies the number of columns of A.

     ALPHA   (input) COMPLEX
	     All the offdiagonal array elements	are set	to ALPHA.

     BETA    (input) COMPLEX
	     All the diagonal array elements are set to	BETA.

     A	     (input/output) COMPLEX array, dimension (LDA,N)
	     On	entry, the m by	n matrix A.  On	exit, A(i,j) = ALPHA, 1	<= i
	     <=	m, 1 <=	j <= n,	i.ne.j;	A(i,i) = BETA ,	1 <= i <= min(m,n)

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
dlaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
slaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
dlaed5 IRIX modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal elements in the array D are assumed to s
slaed5 IRIX modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal elements in the array D are assumed to s
zgegv IRIX B, the generalized eigenvalues (alpha, beta), and optionally,
cgegv IRIX B, the generalized eigenvalues (alpha, beta), and optionally,
slarfg IRIX generate a real elementary reflector H of order n, such that H * ( alpha ) = ( beta ), H' * H = I
zlarfg IRIX generate a complex elementary reflector H of order n, such that H' * ( alpha ) = ( beta ), H' * H = I
dlarfg IRIX generate a real elementary reflector H of order n, such that H * ( alpha ) = ( beta ), H' * H = I
clarfg IRIX generate a complex elementary reflector H of order n, such that H' * ( alpha ) = ( beta ), H' * H = I
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service