csin, ccos, cdiv, cexp, clog, cmul, cpow, csqrt - Complex
functions
#include <math.h>
double_complex csin(
double x,
double y ); float_complex csinf(
float x,
float y ); double_complex ccos(
double x,
double y ); float_complex ccosf(
float x,
float y ); double_complex cdiv(
double a,
double b,
double c,
double d ); float_complex cdivf(
float a,
float b,
float c,
float d ); double_complex cexp(
double x,
double y ); float_complex cexpf(
float x,
float y ); double_complex clog(
double x,
double y ); float_complex clogf(
float x,
float y ); double_complex cmul(
double a,
double b,
double c,
double d ); float_complex cmulf(
float a,
float b,
float c,
float d ); double_complex cpow(
double a,
double b,
double c,
double d ); float_complex cpowf(
float a,
float b,
float c,
float d ); double_complex csqrt(
double x,
double y ); float_complex csqrtf(
float x,
float y );
Math Library (libm)
These functions can only be called from languages that
support the double_complex and float_complex data types.
csin() and csinf() compute the sine of a complex number.
ccos() and ccosf() return the cosine of a complex number.
cdiv() and cdivf() return the quotient of two complex numbers:
(a+ib)/(c+id).
cexp() and cexpf() return the exponential of a complex
number.
clog() and clogf() return the natural logarithm of a complex
number.
cmul() and cmulf() return the product of two complex numbers.
cmul(a,b,c,d) is equivalent to (a + ib) * (c + id).
cpow() and cpowf() raise a complex base (a + ib) to a complex
exponent (c + id). cpow(a,b,c,d) is equivalent to
e**((c + id) ln(a + ib)).
csqrt() and csqrtf() compute the square root of a complex
number, x + iy. The real part of csqrt is greater than or
equal to zero.
---------------------------------------------------------------------
Function Exceptional Argument Routine Behavior
---------------------------------------------------------------------
csin(), csinf() |y| = infinity invalid argument
csin(), csinf() (sinh x sin y) > overflow
max_float
csin(), csinf() (cosh x cos y) > overflow
max_float
ccos(), ccosf() |y| = infinity invalid argument
ccos(), ccosf() (sin x sinh y) > overflow
max_float
ccos(), ccosf() (cos x cosh y) > overflow
max_float
cdiv(), cdivf() c=0 and d=0 divide by zero
cdiv(), cdivf() a=b=c=d=0 invalid argument
cexp(), cexpf() |y| = infinity invalid argument
cexp(), cexpf() |e**x cos y| > overflow
max_float
cexp(), cexpf() |e**x sin y| > overflow
max_float
cexp(), cexpf() |e**x cos y| < underflow
min_float
cexp(), cexpf() |e**x sin y| < underflow
min_float
clog(), clogf() y=0 and x=0 invalid argument
clog(), clogf() |x| = |y| = infinity invalid argument
cpow(), cpowf() sqrt(a**2 + b**2) > overflow
max_float
cpow(), cpowf() c/2 * ln(a**2 + b**2) > overflow
max_float
cpow(), cpowf() c/2 * ln(a**2 + b**2) - overflow
(d * atan2(b,c)) >
max_float
---------------------------------------------------------------------
--------------------------------------------------------------------
Value Name Data Type Hexadecimal Value Decimal Value
--------------------------------------------------------------------
max_float F_FLOAT FFFF7FFF 1.701411e38
G_FLOAT FFFFFFFFFFFF7FFF 8.988465674311579e307
S_FLOAT 7F7FFFFF 3.402823e38
T_FLOAT 7FEFFFFFFFFFFFFF 1.797693134862316e308
min_float F_FLOAT 00000080 2.9387359e-39
G_FLOAT 0000000000000010 5.562684646268003e-309
S_FLOAT 00000001 1.4012985e-45
T_FLOAT 0000000000000001 4.940656458412465e-324
--------------------------------------------------------------------
cabs(3)
complex(3)
[ Back ] |