*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->NetBSD man pages -> lex (1)              
Title
Content
Arch
Section
 

FLEX(1)

Contents


NAME    [Toc]    [Back]

       flex, lex - fast lexical analyzer generator

SYNOPSIS    [Toc]    [Back]

       flex  [-bcdfhilnpstvwBFILTV78+? -C[aefFmr] -ooutput -Ppre-
       fix -Sskeleton] [--help --version] [filename ...]

OVERVIEW    [Toc]    [Back]

       This manual describes flex, a tool for generating programs
       that   perform   pattern-matching  on  text.   The  manual
       includes both tutorial and reference sections:

           Description
               a brief overview of the tool

           Some Simple Examples

           Format Of The Input File

           Patterns
               the extended regular expressions used by flex

           How The Input Is Matched
               the rules for determining what has been matched

           Actions
               how to specify what to do when a pattern is matched

           The Generated Scanner
               details regarding the scanner that flex produces;
               how to control the input source

           Start Conditions
               introducing context into your scanners, and
               managing "mini-scanners"

           Multiple Input Buffers
               how to manipulate multiple input sources; how to
               scan from strings instead of files

           End-of-file Rules
               special rules for matching the end of the input

           Miscellaneous Macros
               a summary of macros available to the actions

           Values Available To The User
               a summary of values available to the actions

           Interfacing With Yacc
               connecting flex scanners together with yacc parsers

           Options
               flex command-line options, and the "%option"
               directive

           Performance Considerations
               how to make your scanner go as fast as possible

           Generating C++ Scanners
               the (experimental) facility for generating C++
               scanner classes

           Incompatibilities With Lex And POSIX
               how flex differs from ATT lex and the POSIX lex
               standard

           Diagnostics
               those error messages produced by flex (or scanners
               it generates) whose meanings might not be apparent

           Files
               files used by flex

           Deficiencies / Bugs
               known problems with flex

           See Also
               other documentation, related tools

           Author
               includes contact information

DESCRIPTION    [Toc]    [Back]

       flex is a tool for  generating  scanners:  programs  which
       recognized lexical patterns in text.  flex reads the given
       input files, or its standard input if no  file  names  are
       given,  for  a  description of a scanner to generate.  The
       description is in the form of pairs of regular expressions
       and  C  code,  called  rules. flex generates as output a C
       source file, lex.yy.c, which defines  a  routine  yylex().
       This  file is compiled and linked with the -lfl library to
       produce an executable.  When the  executable  is  run,  it
       analyzes  its input for occurrences of the regular expressions.
  Whenever it finds one, it executes the corresponding
 C code.

SOME SIMPLE EXAMPLES    [Toc]    [Back]

       First  some  simple  examples to get the flavor of how one
       uses flex.  The following flex input specifies  a  scanner
       which  whenever  it  encounters the string "username" will
       replace it with the user's login name:

           %%
           username    printf( "%s", getlogin() );

       By default, any text not matched  by  a  flex  scanner  is
       copied to the output, so the net effect of this scanner is
       to copy its input file to its output with each  occurrence
       of  "username" expanded.  In this input, there is just one
       rule.  "username" is the pattern and the "printf"  is  the
       action.  The "%%" marks the beginning of the rules.

       Here's another simple example:

                   int num_lines = 0, num_chars = 0;

           %%
           \n      ++num_lines; ++num_chars;
           .       ++num_chars;

           %%
           main()
                   {
                   yylex();
                   printf( "# of lines = %d, # of chars = %d\n",
                           num_lines, num_chars );
                   }

       This  scanner counts the number of characters and the number
 of lines in its input (it  produces  no  output  other
       than  the  final  report  on  the counts).  The first line
       declares two globals, "num_lines" and  "num_chars",  which
       are  accessible both inside yylex() and in the main() routine
 declared after the second "%%".  There are two rules,
       one which matches a newline ("\n") and increments both the
       line count and the character count, and one which  matches
       any  character  other than a newline (indicated by the "."
       regular expression).

       A somewhat more complicated example:

           /* scanner for a toy Pascal-like language */

           %{
           /* need this for the call to atof() below */
           #include math.h
           %}

           DIGIT    [0-9]
           ID       [a-z][a-z0-9]*

           %%

           {DIGIT}+    {
                       printf( "An integer: %s (%d)\n", yytext,
                               atoi( yytext ) );
                       }

           {DIGIT}+"."{DIGIT}*        {
                       printf( "A float: %s (%g)\n", yytext,
                               atof( yytext ) );
                       }

           if|then|begin|end|procedure|function        {
                       printf( "A keyword: %s\n", yytext );
                       }

           {ID}        printf( "An identifier: %s\n", yytext );

           "+"|"-"|"*"|"/"   printf( "An operator: %s\n", yytext );

           "{"[^}\n]*"}"     /* eat up one-line comments */

           [ \t\n]+          /* eat up whitespace */

           .           printf( "Unrecognized character: %s\n", yytext );

           %%

           main( argc, argv )
           int argc;
           char **argv;
               {
               ++argv, --argc;  /* skip over program name */
               if ( argc  0 )
                       yyin = fopen( argv[0], "r" );
               else
                       yyin = stdin;

               yylex();
               }

       This is the beginnings of a simple scanner for a  language
       like  Pascal.  It identifies different types of tokens and
       reports on what it has seen.

       The details of this example will be explained in the  following
 sections.

FORMAT OF THE INPUT FILE    [Toc]    [Back]

       The  flex input file consists of three sections, separated
       by a line with just %% in it:

           definitions
           %%
           rules
           %%
           user code

       The definitions section contains  declarations  of  simple
       name  definitions  to  simplify the scanner specification,
       and declarations of start conditions, which are  explained
       in a later section.

       Name definitions have the form:

           name definition

       The  "name" is a word beginning with a letter or an underscore
 ('_') followed by zero or more letters, digits, '_',
       or  '-'  (dash).   The definition is taken to begin at the
       first non-white-space character  following  the  name  and
       continuing  to  the  end  of the line.  The definition can
       subsequently be referred to  using  "{name}",  which  will
       expand to "(definition)".  For example,

           DIGIT    [0-9]
           ID       [a-z][a-z0-9]*

       defines "DIGIT" to be a regular expression which matches a
       single digit, and "ID" to be a  regular  expression  which
       matches  a letter followed by zero-or-more letters-or-digits.
  A subsequent reference to

           {DIGIT}+"."{DIGIT}*

       is identical to

           ([0-9])+"."([0-9])*

       and matches one-or-more digits followed by a '.'  followed
       by zero-or-more digits.

       The  rules  section of the flex input contains a series of
       rules of the form:

           pattern   action

       where the pattern must be unindented and the  action  must
       begin on the same line.

       See  below  for  a  further  description  of  patterns and
       actions.

       Finally,  the  user  code  section  is  simply  copied  to
       lex.yy.c  verbatim.   It  is  used  for companion routines
       which call or are called by the scanner.  The presence  of
       this  section is optional; if it is missing, the second %%
       in the input file may be skipped, too.

       In the definitions and rules sections, any  indented  text
       or  text  enclosed  in %{ and %} is copied verbatim to the
       output (with the %{}'s removed).  The  %{}'s  must  appear
       unindented on lines by themselves.

       In  the  rules section, any indented or %{} text appearing
       before the first rule may be  used  to  declare  variables
       which  are  local  to  the scanning routine and (after the
       declarations) code which is to be  executed  whenever  the
       scanning  routine  is entered.  Other indented or %{} text
       in the rule section is still copied to the output, but its
       meaning is not well-defined and it may well cause compiletime
 errors (this feature is present for POSIX compliance;
       see below for other such features).

       In the definitions section (but not in the rules section),
       an unindented comment (i.e., a line beginning  with  "/*")
       is also copied verbatim to the output up to the next "*/".

PATTERNS    [Toc]    [Back]

       The patterns in the input are written  using  an  extended
       set of regular expressions.  These are:

           x          match the character 'x'
           .          any character (byte) except newline
           [xyz]      a "character class"; in this case, the pattern
                        matches either an 'x', a 'y', or a 'z'
           [abj-oZ]   a "character class" with a range in it; matches
                        an 'a', a 'b', any letter from 'j' through 'o',
                        or a 'Z'
           [^A-Z]     a "negated character class", i.e., any character
                        but those in the class.  In this case, any
                        character EXCEPT an uppercase letter.
           [^A-Z\n]   any character EXCEPT an uppercase letter or
                        a newline
           r*         zero or more r's, where r is any regular expression
           r+         one or more r's
           r?         zero or one r's (that is, "an optional r")
           r{2,5}     anywhere from two to five r's
           r{2,}      two or more r's
           r{4}       exactly 4 r's
           {name}     the expansion of the "name" definition
                      (see above)
           "[xyz]\"foo"
                      the literal string: [xyz]"foo
           \X         if X is an 'a', 'b', 'f', 'n', 'r', 't', or 'v',
                        then the ANSI-C interpretation of \x.
                        Otherwise, a literal 'X' (used to escape
                        operators such as '*')
           \0         a NUL character (ASCII code 0)
           \123       the character with octal value 123
           \x2a       the character with hexadecimal value 2a
           (r)        match an r; parentheses are used to override
                        precedence (see below)


           rs         the regular expression r followed by the
                        regular expression s; called "concatenation"


           r|s        either an r or an s


           r/s        an r but only if it is followed by an s.  The
                        text matched by s is included when determining
                        whether this rule is the "longest match",
                        but is then returned to the input before
                        the action is executed.  So the action only
                        sees the text matched by r.  This type
                        of pattern is called trailing context".
                        (There are some combinations of r/s that flex
                        cannot match correctly; see notes in the
                        Deficiencies / Bugs section below regarding
                        "dangerous trailing context".)
           ^r         an r, but only at the beginning of a line (i.e.,
                        which just starting to scan, or right after a
                        newline has been scanned).
           r$         an r, but only at the end of a line (i.e., just
                        before a newline).  Equivalent to "r/\n".

                      Note that flex's notion of "newline" is exactly
                      whatever the C compiler used to compile flex
                      interprets '\n' as; in particular, on some DOS
                      systems you must either filter out \r's in the
                      input yourself, or explicitly use r/\r\n for "r$".


           sr       an r, but only in start condition s (see
                        below for discussion of start conditions)
           s1,s2,s3r
                      same, but in any of start conditions s1,
                        s2, or s3
           *r       an r in any start condition, even an exclusive one.


           EOF    an end-of-file
           s1,s2EOF
                      an end-of-file when in start condition s1 or s2

       Note that inside of a character class, all regular expression
 operators lose their special  meaning  except  escape
       ('\') and the character class operators, '-', ']', and, at
       the beginning of the class, '^'.

       The regular expressions listed above are grouped according
       to  precedence, from highest precedence at the top to lowest
 at the bottom.   Those  grouped  together  have  equal
       precedence.  For example,

           foo|bar*

       is the same as

           (foo)|(ba(r*))

       since the '*' operator has higher precedence than concatenation,
 and concatenation higher than  alternation  ('|').
       This  pattern therefore matches either the string "foo" or
       the string "ba" followed by zero-or-more  r's.   To  match
       "foo" or zero-or-more "bar"'s, use:

           foo|(bar)*

       and to match zero-or-more "foo"'s-or-"bar"'s:

           (foo|bar)*


       In  addition to characters and ranges of characters, character
   classes   can   also   contain   character   class
       expressions.  These are expressions enclosed inside [: and
       :] delimiters (which themselves must  appear  between  the
       '['  and  ']'  of  the character class; other elements may
       occur inside the character class, too).  The valid expressions
 are:

           [:alnum:] [:alpha:] [:blank:]
           [:cntrl:] [:digit:] [:graph:]
           [:lower:] [:print:] [:punct:]
           [:space:] [:upper:] [:xdigit:]

       These expressions all designate a set of characters equivalent
 to the corresponding standard C isXXX function.  For
       example,  [:alnum:]  designates those characters for which
       isalnum() returns true - i.e., any alphabetic or  numeric.
       Some  systems  don't  provide  isblank(),  so flex defines
       [:blank:] as a blank or a tab.

       For example,  the  following  character  classes  are  all
       equivalent:

           [[:alnum:]]
           [[:alpha:][:digit:]
           [[:alpha:]0-9]
           [a-zA-Z0-9]

       If  your  scanner  is case-insensitive (the -i flag), then
       [:upper:] and [:lower:] are equivalent to [:alpha:].

       Some notes on patterns:

       -      A negated character class such as the example "[^AZ]"
  above  will match a newline unless "\n" (or an
              equivalent escape sequence) is one of  the  characters
  explicitly  present  in the negated character
              class (e.g., "[^A-Z\n]").  This is unlike how  many
              other  regular expression tools treat negated character
 classes, but unfortunately the  inconsistency
              is   historically  entrenched.   Matching  newlines
              means that a  pattern  like  [^"]*  can  match  the
              entire  input  unless  there's another quote in the
              input.

       -      A rule can have at most one  instance  of  trailing
              context  (the  '/'  operator  or the '$' operator).
              The start condition, '^', and  "EOF"  patterns  can
              only  occur  at the beginning of a pattern, and, as
              well as with '/' and '$', cannot be grouped  inside
              parentheses.   A  '^'  which  does not occur at the
              beginning of a rule or a '$' which does  not  occur
              at  the  end of a rule loses its special properties
              and is treated as a normal character.

              The following are illegal:

                  foo/bar$
                  sc1foosc2bar

              Note that  the  first  of  these,  can  be  written
              "foo/bar\n".

              The  following  will  result  in  '$'  or '^' being
              treated as a normal character:

                  foo|(bar$)
                  foo|^bar

              If what's wanted is a "foo" or a bar-followed-by-anewline,
  the  following could be used (the special
              '|' action is explained below):

                  foo      |
                  bar$     /* action goes here */

              A similar trick will work for matching a foo  or  a
              bar-at-the-beginning-of-a-line.

HOW THE INPUT IS MATCHED    [Toc]    [Back]

       When  the  generated scanner is run, it analyzes its input
       looking for strings which match any of its  patterns.   If
       it  finds  more  than one match, it takes the one matching
       the most text (for trailing context rules,  this  includes
       the  length of the trailing part, even though it will then
       be returned to the  input).   If  it  finds  two  or  more
       matches  of  the same length, the rule listed first in the
       flex input file is chosen.

       Once the match is determined, the  text  corresponding  to
       the  match  (called  the  token)  is made available in the
       global character pointer yytext, and  its  length  in  the
       global  integer  yyleng.   The action corresponding to the
       matched pattern is then executed (a more detailed description
  of actions follows), and then the remaining input is
       scanned for another match.

       If no match is found, then the default rule  is  executed:
       the  next character in the input is considered matched and
       copied to the standard output.  Thus, the  simplest  legal
       flex input is:

           %%

       which  generates  a  scanner  that simply copies its input
       (one character at a time) to its output.

       Note that yytext can be defined  in  two  different  ways:
       either  as  a  character  pointer or as a character array.
       You can control which definition flex  uses  by  including
       one  of  the  special directives %pointer or %array in the
       first (definitions)  section  of  your  flex  input.   The
       default is %pointer, unless you use the -l lex compatibility
 option, in which case yytext will be  an  array.   The
       advantage  of using %pointer is substantially faster scanning
 and no  buffer  overflow  when  matching  very  large
       tokens (unless you run out of dynamic memory).  The disadvantage
 is that you are restricted in how your actions can
       modify  yytext  (see  the  next section), and calls to the
       unput() function destroys the present contents of  yytext,
       which  can  be a considerable porting headache when moving
       between different lex versions.

       The advantage of %array is that you can then modify yytext
       to  your  heart's  content,  and  calls  to unput() do not
       destroy yytext (see  below).   Furthermore,  existing  lex
       programs sometimes access yytext externally using declarations
 of the form:
           extern char yytext[];
       This definition is erroneous when used with %pointer,  but
       correct for %array.

       %array defines yytext to be an array of YYLMAX characters,
       which defaults to a fairly large value.   You  can  change
       the size by simply #define'ing YYLMAX to a different value
       in the first section of your  flex  input.   As  mentioned
       above,  with %pointer yytext grows dynamically to accommodate
 large tokens.  While this means your %pointer scanner
       can accommodate very large tokens (such as matching entire
       blocks of comments), bear in mind that each time the scanner
  must  resize  yytext  it  also must rescan the entire
       token from the beginning,  so  matching  such  tokens  can
       prove slow.  yytext presently does not dynamically grow if
       a call to unput() results in too much  text  being  pushed
       back; instead, a run-time error results.

       Also  note  that  you  cannot  use %array with C++ scanner
       classes (the c++ option; see below).

ACTIONS    [Toc]    [Back]

       Each pattern in a rule has a corresponding  action,  which
       can be any arbitrary C statement.  The pattern ends at the
       first non-escaped whitespace character; the  remainder  of
       the line is its action.  If the action is empty, then when
       the pattern is matched the  input  token  is  simply  discarded.
  For example, here is the specification for a program
 which deletes all occurrences of "zap  me"  from  its
       input:

           %%
           "zap me"

       (It  will  copy  all  other characters in the input to the
       output since they will be matched by the default rule.)

       Here is a program which  compresses  multiple  blanks  and
       tabs  down  to  a single blank, and throws away whitespace
       found at the end of a line:

           %%
           [ \t]+        putchar( ' ' );
           [ \t]+$       /* ignore this token */


       If the action contains a '{', then the action  spans  till
       the  balancing '}' is found, and the action may cross multiple
 lines.  flex knows about C strings and comments  and
       won't  be  fooled  by  braces  found within them, but also
       allows actions to begin with  %{  and  will  consider  the
       action to be all the text up to the next %} (regardless of
       ordinary braces inside the action).

       An action consisting solely of a vertical bar ('|')  means
       "same  as the action for the next rule."  See below for an
       illustration.

       Actions can include arbitrary  C  code,  including  return
       statements  to  return  a value to whatever routine called
       yylex().  Each time yylex() is called  it  continues  processing
 tokens from where it last left off until it either
       reaches the end of the file or executes a return.

       Actions are free to modify yytext except  for  lengthening
       it  (adding  characters  to  its end--these will overwrite
       later characters in the input stream).  This however  does
       not  apply  when  using  %array (see above); in that case,
       yytext may be freely modified in any way.

       Actions are free to modify yyleng except they  should  not
       do  so  if  the  action also includes use of yymore() (see
       below).

       There are a number of  special  directives  which  can  be
       included within an action:

       -      ECHO copies yytext to the scanner's output.

       -      BEGIN  followed  by  the  name of a start condition
              places the scanner in the corresponding start  condition
 (see below).

       -      REJECT  directs  the  scanner  to proceed on to the
              "second best" rule which matched the  input  (or  a
              prefix  of  the  input).   The  rule  is  chosen as
              described above in "How the Input is Matched",  and
              yytext  and  yyleng  set  up appropriately.  It may
              either be one which matched as  much  text  as  the
              originally  chosen  rule but came later in the flex
              input file, or one which matched  less  text.   For
              example, the following will both count the words in
              the input and call the routine  special()  whenever
              "frob" is seen:

                          int word_count = 0;
                  %%

                  frob        special(); REJECT;
                  [^ \t\n]+   ++word_count;

              Without the REJECT, any "frob"'s in the input would
              not be counted as words, since the scanner normally
              executes  only  one  action  per  token.   Multiple
              REJECT's are allowed, each  one  finding  the  next
              best  choice  to  the  currently  active rule.  For
              example, when the following scanner scans the token
              "abcd", it will write "abcdabcaba" to the output:

                  %%
                  a        |
                  ab       |
                  abc      |
                  abcd     ECHO; REJECT;
                  .|\n     /* eat up any unmatched character */

              (The  first  three  rules share the fourth's action
              since they use the special '|' action.)  REJECT  is
              a  particularly expensive feature in terms of scanner
 performance; if it is used in any of the  scanner's
  actions  it  will slow down all of the scanner's
 matching.  Furthermore, REJECT cannot be used
              with the -Cf or -CF options (see below).

              Note  also  that  unlike the other special actions,
              REJECT is a branch; code immediately  following  it
              in the action will not be executed.

       -      yymore()  tells  the  scanner that the next time it
              matches a rule, the corresponding token  should  be
              appended  onto  the  current value of yytext rather
              than replacing it.  For example,  given  the  input
              "mega-kludge"  the following will write "mega-megakludge"
 to the output:

                  %%
                  mega-    ECHO; yymore();
                  kludge   ECHO;

              First "mega-" is matched and echoed to the  output.
              Then  "kludge" is matched, but the previous "mega-"
              is still hanging around at the beginning of  yytext
              so  the  ECHO  for  the "kludge" rule will actually
              write "mega-kludge".

       Two notes regarding  use  of  yymore().   First,  yymore()
       depends  on  the  value of yyleng correctly reflecting the
       size of the current token, so you must not  modify  yyleng
       if  you  are  using  yymore().   Second,  the  presence of
       yymore() in the scanner's action entails a  minor  performance
 penalty in the scanner's matching speed.

       -      yyless(n) returns all but the first n characters of
              the current token back to the input  stream,  where
              they  will  be rescanned when the scanner looks for
              the next match.  yytext  and  yyleng  are  adjusted
              appropriately  (e.g., yyleng will now be equal to n
              ).  For example, on the input "foobar" the  following
 will write out "foobarbar":

                  %%
                  foobar    ECHO; yyless(3);
                  [a-z]+    ECHO;

              An  argument  of  0 to yyless will cause the entire
              current input string to be scanned  again.   Unless
              you've  changed  how  the scanner will subsequently
              process its input (using BEGIN, for example),  this
              will result in an endless loop.

       Note  that  yyless  is a macro and can only be used in the
       flex input file, not from other source files.

       -      unput(c) puts the character c back onto  the  input
              stream.   It  will  be  the next character scanned.
              The following action will take  the  current  token
              and  cause it to be rescanned enclosed in parentheses.


                  {
                  int i;
                  /* Copy yytext because unput() trashes yytext */
                  char *yycopy = strdup( yytext );
                  unput( ')' );
                  for ( i = yyleng - 1; i  0; --i )
                      unput( yycopy[i] );
                  unput( '(' );
                  free( yycopy );
                  }

              Note that since each unput() puts the given character
  back  at  the  beginning  of the input stream,
              pushing back strings must be done back-to-front.

       An important potential problem when using unput() is  that
       if you are using %pointer (the default), a call to unput()
       destroys the contents of yytext, starting with its  rightmost
  character  and  devouring  one character to the left
       with each call.  If you need the value of yytext preserved
       after  a  call  to  unput() (as in the above example), you
       must either first copy it elsewhere, or build your scanner
       using %array instead (see How The Input Is Matched).

       Finally,  note  that you cannot put back EOF to attempt to
       mark the input stream with an end-of-file.

       -      input() reads the next  character  from  the  input
              stream.   For  example, the following is one way to
              eat up C comments:

                  %%
                  "/*"        {
                              register int c;

                              for ( ; ; )
                                  {
                                  while ( (c = input()) != '*'
                                          c != EOF )
                                      ;    /* eat up text of comment */

                                  if ( c == '*' )
                                      {
                                      while ( (c = input()) == '*' )
                                          ;
                                      if ( c == '/' )
                                          break;    /* found the end */
                                      }

                                  if ( c == EOF )
                                      {
                                      error( "EOF in comment" );
                                      break;
                                      }
                                  }
                              }

              (Note that if the scanner is  compiled  using  C++,
              then  input()  is instead referred to as yyinput(),
              in order to avoid a name clash with the C++  stream
              by the name of input.)

       -      YY_FLUSH_BUFFER   flushes  the  scanner's  internal
              buffer so that the next time the  scanner  attempts
              to  match  a token, it will first refill the buffer
              using YY_INPUT (see The Generated Scanner,  below).
              This  action  is a special case of the more general
              yy_flush_buffer() function, described below in  the
              section Multiple Input Buffers.

       -      yyterminate()  can  be  used  in  lieu  of a return
              statement in an action.  It terminates the  scanner
              and returns a 0 to the scanner's caller, indicating
              "all done".   By  default,  yyterminate()  is  also
              called when an end-of-file is encountered.  It is a
              macro and may be redefined.

THE GENERATED SCANNER    [Toc]    [Back]

       The output of flex is the file  lex.yy.c,  which  contains
       the  scanning  routine yylex(), a number of tables used by
       it for matching tokens, and a number of auxiliary routines
       and macros.  By default, yylex() is declared as follows:

           int yylex()
               {
               ... various definitions and the actions in here ...
               }

       (If your environment supports function prototypes, then it
       will be "int yylex( void  )".)   This  definition  may  be
       changed by defining the "YY_DECL" macro.  For example, you
       could use:

           #define YY_DECL float lexscan( a, b ) float a, b;

       to give the scanning routine the name lexscan, returning a
       float,  and  taking two floats as arguments.  Note that if
       you give arguments to the scanning  routine  using  a  KRstyle/non-prototyped
 function declaration, you must terminate
 the definition with a semi-colon (;).

       Whenever yylex() is  called,  it  scans  tokens  from  the
       global input file yyin (which defaults to stdin).  It continues
 until it either reaches an  end-of-file  (at  which
       point  it  returns the value 0) or one of its actions executes
 a return statement.

       If the scanner reaches an  end-of-file,  subsequent  calls
       are undefined unless either yyin is pointed at a new input
       file (in which case scanning continues from that file), or
       yyrestart()  is called.  yyrestart() takes one argument, a
       FILE * pointer  (which  can  be  nil,  if  you've  set  up
       YY_INPUT  to scan from a source other than yyin), and initializes
 yyin for scanning from  that  file.   Essentially
       there  is  no  difference between just assigning yyin to a
       new input file or using yyrestart() to do so;  the  latter
       is  available  for compatibility with previous versions of
       flex, and because it can be used to switch input files  in
       the middle of scanning.  It can also be used to throw away
       the current input buffer, by calling it with  an  argument
       of yyin; but better is to use YY_FLUSH_BUFFER (see above).
       Note that yyrestart() does not reset the  start  condition
       to INITIAL (see Start Conditions, below).

       If yylex() stops scanning due to executing a return statement
 in one of the actions, the scanner may then be called
       again and it will resume scanning where it left off.

       By  default  (and for purposes of efficiency), the scanner
       uses block-reads rather than simple getc() calls  to  read
       characters from yyin.  The nature of how it gets its input
       can  be  controlled  by  defining  the   YY_INPUT   macro.
       YY_INPUT's           calling          sequence          is
       "YY_INPUT(buf,result,max_size)".  Its action is  to  place
       up  to  max_size characters in the character array buf and
       return in the integer variable result either the number of
       characters  read  or  the constant YY_NULL (0 on Unix systems)
 to indicate EOF.  The default  YY_INPUT  reads  from
       the global file-pointer "yyin".

       A  sample  definition of YY_INPUT (in the definitions section
 of the input file):

           %{
           #define YY_INPUT(buf,result,max_size) \
               { \
               int c = getchar(); \
               result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \
               }
           %}

       This definition will change the input processing to  occur
       one character at a time.

       When  the  scanner receives an end-of-file indication from
       YY_INPUT,  it  then  checks  the  yywrap()  function.   If
       yywrap() returns false (zero), then it is assumed that the
       function has gone ahead  and  set  up  yyin  to  point  to
       another input file, and scanning continues.  If it returns
       true (non-zero), then the scanner terminates, returning  0
       to its caller.  Note that in either case, the start condition
 remains unchanged; it does not revert to INITIAL.

       If you do not supply your own version  of  yywrap(),  then
       you  must  either  use %option noyywrap (in which case the
       scanner behaves as though yywrap()  returned  1),  or  you
       must  link  with -lfl to obtain the default version of the
       routine, which always returns 1.

       Three routines are available for scanning  from  in-memory
       buffers     rather     than    files:    yy_scan_string(),
       yy_scan_bytes(), and yy_scan_buffer().  See the discussion
       of them below in the section Multiple Input Buffers.

       The  scanner  writes  its  ECHO output to the yyout global
       (default, stdout), which may be redefined by the user simply
 by assigning it to some other FILE pointer.

START CONDITIONS    [Toc]    [Back]

       flex  provides  a  mechanism  for conditionally activating
       rules.  Any rule whose pattern is prefixed with "sc"  will
       only  be active when the scanner is in the start condition
       named "sc".  For example,

           STRING[^"]*        { /* eat up the string body ... */
                       ...
                       }

       will be active only when the scanner is  in  the  "STRING"
       start condition, and

           INITIAL,STRING,QUOTE\.        { /* handle an escape ... */
                       ...
                       }

       will  be  active  only when the current start condition is
       either "INITIAL", "STRING", or "QUOTE".

       Start conditions are declared in the  definitions  (first)
       section of the input using unindented lines beginning with
       either %s or %x followed by a list of names.   The  former
       declares  inclusive start conditions, the latter exclusive
       start conditions.  A start condition  is  activated  using
       the  BEGIN  action.   Until  the next BEGIN action is executed,
 rules with the given start condition will be active
       and  rules  with  other start conditions will be inactive.
       If the start condition is inclusive, then  rules  with  no
       start  conditions  at  all  will also be active.  If it is
       exclusive, then only rules qualified with the start condition
  will  be  active.   A set of rules contingent on the
       same exclusive start condition describe a scanner which is
       independent  of  any of the other rules in the flex input.
       Because of this, exclusive start conditions make  it  easy
       to  specify  "mini-scanners"  which  scan  portions of the
       input that  are  syntactically  different  from  the  rest
       (e.g., comments).

       If  the  distinction between inclusive and exclusive start
       conditions is still a little vague, here's a simple  example
  illustrating the connection between the two.  The set
       of rules:

           %s example
           %%

           examplefoo   do_something();

           bar            something_else();

       is equivalent to

           %x example
           %%

           examplefoo   do_something();

           INITIAL,examplebar    something_else();

       Without the INITIAL,example qualifier, the bar pattern  in
       the  second  example  wouldn't  be  active (i.e., couldn't
       match) when in start condition example.  If we  just  used
       example  to  qualify  bar,  though,  then it would only be
       active in example and not in INITIAL, while in  the  first
       example  it's active in both, because in the first example
       the example startion condition is an inclusive (%s)  start
       condition.

       Also  note  that  the  special start-condition specifier *
       matches every start condition.  Thus,  the  above  example
       could also have been written;

           %x example
           %%

           examplefoo   do_something();

           *bar    something_else();


       The default rule (to ECHO any unmatched character) remains
       active in start conditions.  It is equivalent to:

           *.|\n     ECHO;


       BEGIN(0) returns to the  original  state  where  only  the
       rules with no start conditions are active.  This state can
       also be referred to as the start-condition  "INITIAL",  so
       BEGIN(INITIAL)  is equivalent to BEGIN(0).  (The parentheses
 around the start condition name are not  required  but
       are considered good style.)

       BEGIN  actions  can  also be given as indented code at the
       beginning of the rules section.  For example, the  following
  will  cause  the scanner to enter the "SPECIAL" start
       condition whenever yylex() is called and the global  variable
 enter_special is true:

                   int enter_special;

           %x SPECIAL
           %%
                   if ( enter_special )
                       BEGIN(SPECIAL);

           SPECIALblahblahblah
           ...more rules follow...


       To  illustrate  the  uses  of  start conditions, here is a
       scanner which provides two different interpretations of  a
       string  like  "123.456".   By  default it will treat it as
       three tokens, the integer "123",  a  dot  ('.'),  and  the
       integer  "456".   But if the string is preceded earlier in
       the line by the string "expect-floats" it will treat it as
       a single token, the floating-point number 123.456:

           %{
           #include math.h
           %}
           %s expect

           %%
           expect-floats        BEGIN(expect);

           expect[0-9]+"."[0-9]+      {
                       printf( "found a float, = %f\n",
                               atof( yytext ) );
                       }
           expect\n           {
                       /* that's the end of the line, so
                        * we need another "expect-number"
                        * before we'll recognize any more
                        * numbers
                        */
                       BEGIN(INITIAL);
                       }

           [0-9]+      {
                       printf( "found an integer, = %d\n",
                               atoi( yytext ) );
                       }

           "."         printf( "found a dot\n" );

       Here  is  a scanner which recognizes (and discards) C comments
 while maintaining a count of the current input line.

           %x comment
           %%
                   int line_num = 1;

           "/*"         BEGIN(comment);

           comment[^*\n]*        /* eat anything that's not a '*' */
           comment"*"+[^*/\n]*   /* eat up '*'s not followed by '/'s */
           comment\n             ++line_num;
           comment"*"+"/"        BEGIN(INITIAL);

       This  scanner  goes  to  a bit of trouble to match as much
       text  as  possible  with  each  rule.   In  general,  when
       attempting  to  write a high-speed scanner try to match as
       much possible in each rule, as it's a big win.

       Note that start-conditions names are really integer values
       and  can  be  stored  as  such.   Thus, the above could be
       extended in the following fashion:

           %x comment foo
           %%
                   int line_num = 1;
                   int comment_caller;

           "/*"         {
                        comment_caller = INITIAL;
                        BEGIN(comment);
                        }

           ...

           foo"/*"    {
                        comment_caller = foo;
                        BEGIN(comment);
                        }

           comment[^*\n]*        /* eat anything that's not a '*' */
           comment"*"+[^*/\n]*   /* eat up '*'s not followed by '/'s */
           comment\n             ++line_num;
           comment"*"+"/"        BEGIN(comment_caller);

       Furthermore, you can access the  current  start  condition
       using the integer-valued YY_START macro.  For example, the
       above assignments to comment_caller could instead be written


           comment_caller = YY_START;

       Flex provides YYSTATE as an alias for YY_START (since that
       is what's used by ATT lex).

       Note that start conditions do not  have  their  own  namespace;
  %s's and %x's declare names in the same fashion as
       #define's.

       Finally, here's an example of how to match C-style  quoted
       strings   using   exclusive  start  conditions,  including
       expanded escape sequences (but not including checking  for
       a string that's too long):

           %x str

           %%
                   char string_buf[MAX_STR_CONST];
                   char *string_buf_ptr;


           \"      string_buf_ptr = string_buf; BEGIN(str);

           str\"        { /* saw closing quote - all done */
                   BEGIN(INITIAL);
                   *string_buf_ptr = '\0';
                   /* return string constant token type and
                    * value to parser
                    */
                   }

           str\n        {
                   /* error - unterminated string constant */
                   /* generate error message */
                   }

           str\\[0-7]{1,3} {
                   /* octal escape sequence */
                   int result;

                   (void) sscanf( yytext + 1, "%o", result );

                   if ( result  0xff )
                           /* error, constant is out-of-bounds */

                   *string_buf_ptr++ = result;
                   }

           str\\[0-9]+ {
                   /* generate error - bad escape sequence; something
                    * like '\48' or '\0777777'
                    */
                   }

           str\\n  *string_buf_ptr++ = '\n';
           str\\t  *string_buf_ptr++ = '\t';
           str\\r  *string_buf_ptr++ = '\r';
           str\\b  *string_buf_ptr++ = '\b';
           str\\f  *string_buf_ptr++ = '\f';

           str\\(.|\n)  *string_buf_ptr++ = yytext[1];

           str[^\\\n\"]+        {
                   char *yptr = yytext;

                   while ( *yptr )
                           *string_buf_ptr++ = *yptr++;
                   }


       Often,  such as in some of the examples above, you wind up
       writing a whole bunch of rules all preceded  by  the  same
       start  condition(s).   Flex makes this a little easier and
       cleaner by introducing a notion of start condition  scope.
       A start condition scope is begun with:

           SCs{

       where  SCs  is  a  list  of  one or more start conditions.
       Inside the start condition scope, every rule automatically
       has  the  prefix  SCs  applied  to  it,  until a '}' which
       matches the initial '{'.  So, for example,

           ESC{
               "\\n"   return '\n';
               "\\r"   return '\r';
               "\\f"   return '\f';
               "\\0"   return '\0';
           }

       is equivalent to:

           ESC"\\n"  return '\n';
           ESC"\\r"  return '\r';
           ESC"\\f"  return '\f';
           ESC"\\0"  return '\0';

       Start condition scopes may be nested.

       Three routines are available for  manipulating  stacks  of
       start conditions:

       void yy_push_state(int new_state)
              pushes  the current start condition onto the top of
              the start condition stack and switches to new_state
              as though you had used BEGIN new_state (recall that
              start condition names are also integers).

       void yy_pop_state()
              pops the top of the stack and switches  to  it  via
              BEGIN.

       int yy_top_state()
              returns  the  top of the stack without altering the
              stack's contents.

       The start condition stack grows dynamically and so has  no
       built-in size limitation.  If memory is exhausted, program
       execution aborts.

       To use start condition stacks, your scanner must include a
       %option stack directive (see Options below).

MULTIPLE INPUT BUFFERS    [Toc]    [Back]

       Some  scanners  (such  as  those  which  support "include"
       files) require reading from  several  input  streams.   As
       flex  scanners  do a large amount of buffering, one cannot
       control where the next input will be read from  by  simply
       writing a YY_INPUT which is sensitive to the scanning context.
  YY_INPUT is only called when  the  scanner  reaches
       the  end  of  its  buffer,  which may be a long time after
       scanning a statement such as an "include"  which  requires
       switching the input source.

       To  negotiate  these  sorts  of  problems, flex provides a
       mechanism for  creating  and  switching  between  multiple
       input buffers.  An input buffer is created by using:

           YY_BUFFER_STATE yy_create_buffer( FILE *file, int size )

       which takes a FILE pointer and a size and creates a buffer
       associated with the given file and large  enough  to  hold
       size  characters  (when  in doubt, use YY_BUF_SIZE for the
       size).  It returns a  YY_BUFFER_STATE  handle,  which  may
       then  be  passed  to  other  routines  (see  below).   The
       YY_BUFFER_STATE type is a  pointer  to  an  opaque  struct
       yy_buffer_state  structure,  so  you may safely initialize
       YY_BUFFER_STATE variables to ((YY_BUFFER_STATE) 0) if  you
       wish,  and  also refer to the opaque structure in order to
       correctly declare input buffers in source files other than
       that  of  your scanner.  Note that the FILE pointer in the
       call to yy_create_buffer is only used as the value of yyin
       seen by YY_INPUT; if you redefine YY_INPUT so it no longer
       uses yyin, then you can safely pass a nil FILE pointer  to
       yy_create_buffer.   You select a particular buffer to scan
       from using:

           void yy_switch_to_buffer( YY_BUFFER_STATE new_buffer )

       switches the scanner's input buffer so  subsequent  tokens
       will      come     from     new_buffer.      Note     that
       yy_switch_to_buffer() may  be  used  by  yywrap()  to  set
       things up for continued scanning, instead of opening a new
       file and pointing yyin at it.  Note  also  that  switching
       input sources via either yy_switch_to_buffer() or yywrap()
       does not change the start condition.

           void yy_delete_buffer( YY_BUFFER_STATE buffer )

       is used to reclaim the storage associated with  a  buffer.
       (  buffer can be nil, in which case the routine does nothing.)
  You can also clear the current contents of a buffer
       using:

           void yy_flush_buffer( YY_BUFFER_STATE buffer )

       This  function discards the buffer's contents, so the next
       time the scanner  attempts  to  match  a  token  from  the
       buffer, it will first fill the buffer anew using YY_INPUT.

       yy_new_buffer() is an alias for  yy_create_buffer(),  provided
 for compatibility with the C++ use of new and delete
       for creating and destroying dynamic objects.

       Finally,   the   YY_CURRENT_BUFFER   macro    returns    a
       YY_BUFFER_STATE handle to the current buffer.

       Here  is  an example of using these features for writing a
       scanner which expands include files (the  EOF  feature  is
       discussed below):

           /* the "incl" state is used for picking up the name
            * of an include file
            */
           %x incl

           %{
           #define MAX_INCLUDE_DEPTH 10
           YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];
           int include_stack_ptr = 0;
           %}

           %%
           include             BEGIN(incl);

           [a-z]+              ECHO;
           [^a-z\n]*\n?        ECHO;

           incl[ \t]*      /* eat the whitespace */
           incl[^ \t\n]+   { /* got the include file name */
                   if ( include_stack_ptr  MAX_INCLUDE_DEPTH )
                       {
                       fprintf( stderr, "Includes nested too deeply" );
                       exit( 1 );
                       }

                   include_stack[include_stack_ptr++] =
                       YY_CURRENT_BUFFER;

                   yyin = fopen( yytext, "r" );

                   if ( ! yyin )
                       error( ... );

                   yy_switch_to_buffer(
                       yy_create_buffer( yyin, YY_BUF_SIZE ) );

                   BEGIN(INITIAL);
                   }

           EOF {
                   if ( --include_stack_ptr  0 )
                       {
                       yyterminate();
                       }

                   else
                       {
                       yy_delete_buffer( YY_CURRENT_BUFFER );
                       yy_switch_to_buffer(
                            include_stack[include_stack_ptr] );
                       }
                   }

       Three  routines are available for setting up input buffers
       for scanning in-memory strings instead of files.   All  of
       them  create  a  new input buffer for scanning the string,
       and return a corresponding YY_BUFFER_STATE  handle  (which
       you  should  delete with yy_delete_buffer() when done with
       it).   They  also  switch  to   the   new   buffer   using
       yy_switch_to_buffer(),  so  the  next call to yylex() will
       start scanning the string.

       yy_scan_string(const char *str)
              scans a NUL-terminated string.

       yy_scan_bytes(const char *bytes, int len)
              scans len bytes (including possibly NUL's) starting
              at location bytes.

       Note  that  both of these functions create and scan a copy
       of the string or bytes.  (This  may  be  desirable,  since
       yylex()  modifies  the  contents of the buffer it is scanning.)
  You can avoid the copy by using:

       yy_scan_buffer(char *base, yy_size_t size)
              which scans in place the buffer starting  at  base,
              consisting  of  size  bytes,  the last two bytes of
              which must be  YY_END_OF_BUFFER_CHAR  (ASCII  NUL).
              These  last  two bytes are not scanned; thus, scanning
  consists  of  base[0]  through  base[size-2],
              inclusive.

              If  you  fail  to set up base in this manner (i.e.,
              forget the final two YY_END_OF_BUFFER_CHAR  bytes),
              then yy_scan_buffer() returns a nil pointer instead
              of creating a new input buffer.

              The type yy_size_t is an integral type to which you
              can  cast an integer expression reflecting the size
              of the buffer.

END-OF-FILE RULES    [Toc]    [Back]

       The special rule "EOF" indicates actions which are  to  be
       taken  when  an  end-of-file  is  encountered and yywrap()
       returns non-zero (i.e., indicates no further files to process).
   The  action  must  finish  by  doing  one of four
       things:

       -      assigning yyin to a new  input  file  (in  previous
              versions  of  flex,  after doing the assignment you
              had to call the special action YY_NEW_FILE; this is
              no longer necessary);

       -      executing a return statement;

       -      executing the special yyterminate() action;

       -      or,    switching    to    a    new   buffer   using
              yy_switch_to_buffer()  as  shown  in  the   example
              above.

       EOF  rules  may  not be used with other patterns; they may
       only be qualified with a list of start conditions.  If  an
       unqualified  EOF  rule  is  given, it applies to all start
       conditions which do not  already  have  EOF  actions.   To
       specify  an EOF rule for only the initial start condition,
       use

           INITIALEOF


       These rules are useful for catching things  like  unclosed
       comments.  An example:

           %x quote
           %%

           ...other rules for dealing with quotes...

           quoteEOF   {
                    error( "unterminated quote" );
                    yyterminate();
                    }
           EOF  {
                    if ( *++filelist )
                        yyin = fopen( *filelist, "r" );
                    else
                       yyterminate();
                    }

MISCELLANEOUS MACROS    [Toc]    [Back]

       The  macro  YY_USER_ACTION  can  be  defined to provide an
       action which is  always  executed  prior  to  the  matched
       rule's action.  For example, it could be #define'd to call
       a  routine  to  convert  yytext   to   lower-case.    When
       YY_USER_ACTION  is  invoked, the variable yy_act gives the
       number of the matched rule (rules  are  numbered  starting
       with  1).   Suppose  you want to profile how often each of
       your rules is matched.  The following would do the trick:

           #define YY_USER_ACTION ++ctr[yy_act]

       where ctr is an array to hold the counts for the different
       rules.   Note  that the macro YY_NUM_RULES gives the total
       number of rules (including the default rule, even  if  you
       use -s), so a correct declaration for ctr is:

           int ctr[YY_NUM_RULES];


       The macro YY_USER_INIT may be defined to provide an action
       which is always executed before the first scan (and before
       the  scanner's  internal  initializations  are done).  For
       example, it could be used to call a routine to read  in  a
       data table or open a logging file.

       The  macro  yy_set_interactive(is_interactive) can be used
       to control whether the current buffer is considered inter-
       active.   An  interactive buffer is processed more slowly,
       but must be used when the scanner's input source is indeed
       interactive  to  avoid  problems  due  to  waiting to fill
       buffers (see the discussion of the -I flag below).  A nonzero
  value  in  the  macro invocation marks the buffer as
       interactive, a zero value as non-interactive.   Note  that
       use  of this macro overrides %option always-interactive or
       %opti

 Similar pages
Name OS Title
flex Tru64 Generates a C Language lexical analyzer
perllexwarn OpenBSD Perl Lexical Warnings
lex Tru64 Generates programs for lexical tasks
amesh IRIX audio spectrum analyzer
ssperf IRIX SpeedShop Performance Analyzer
cvbuild IRIX WorkShop Build Analyzer
lex IRIX generate programs for simple lexical tasks
pdffonts Linux Portable Document Format (PDF) font analyzer (version 1.00)
fru IRIX Field replacement unit analyzer for Challenge/Onyx systems
rcs2log OpenBSD RCS to ChangeLog generator
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service