ppbus -- Parallel Port Bus system
device ppbus
device vpo
device lpt
device plip
device ppi
device pps
device lpbb
The ppbus system provides a uniform, modular and architecture-independent
system for the implementation of drivers to control various parallel
devices, and to utilize different parallel port chipsets.
In order to write new drivers or port existing drivers, the ppbus system
provides the following facilities:
+o architecture-independent macros or functions to access parallel
ports
+o mechanism to allow various devices to share the same parallel
port
+o a user interface named ppi(4) that allows parallel port access
from outside the kernel without conflicting with kernel-in
drivers.
Developing new drivers [Toc] [Back]
The ppbus system has been designed to support the development of standard
and non-standard software:
Driver Description
vpo VPI0 parallel to Adaptec AIC-7110 SCSI controller driver. It
uses standard and non-standard parallel port accesses.
ppi Parallel port interface for general I/O
pps Pulse per second Timing Interface
lpbb Philips official parallel port I2C bit-banging interface
Porting existing drivers [Toc] [Back]
Another approach to the ppbus system is to port existing drivers. Various
drivers have already been ported:
Driver Description
lpt lpt printer driver
plip lp parallel network interface driver
ppbus should let you port any other software even from other operating
systems that provide similar services.
PARALLEL PORT CHIPSETS [Toc] [Back] Parallel port chipset support is provided by ppc(4).
The ppbus system provides functions and macros to allocate a new parallel
port bus, then initialize it and upper peripheral device drivers.
ppc makes chipset detection and initialization and then calls ppbus
attach functions to initialize the ppbus system.
The logical parallel port model chosen for the ppbus system is the PC's
parallel port model. Consequently, for the i386 implementation of ppbus,
most of the services provided by ppc are macros for inb() and outb()
calls. But, for an other architecture, accesses to one of our logical
registers (data, status, control...) may require more than one I/O
access.
Description [Toc] [Back]
The parallel port may operate in the following modes:
+o compatible mode, also called Centronics mode
+o bidirectional 8/4-bits mode, also called NIBBLE mode
+o byte mode, also called PS/2 mode
+o Extended Capability Port mode, ECP
+o Enhanced Parallel Port mode, EPP
+o mixed ECP+EPP or ECP+PS/2 modes
Compatible mode [Toc] [Back]
This mode defines the protocol used by most PCs to transfer data to a
printer. In this mode, data is placed on the port's data lines, the
printer status is checked for no errors and that it is not busy, and then
a data Strobe is generated by the software to clock the data to the
printer.
Many I/O controllers have implemented a mode that uses a FIFO buffer to
transfer data with the Compatibility mode protocol. This mode is
referred to as "Fast Centronics" or "Parallel Port FIFO mode".
Bidirectional mode [Toc] [Back]
The NIBBLE mode is the most common way to get reverse channel data from a
printer or peripheral. Combined with the standard host to printer mode,
it provides a complete bidirectional channel.
In this mode, outputs are 8-bits long. Inputs are accomplished by reading
4 of the 8 bits of the status register.
Byte mode [Toc] [Back]
In this mode, the data register is used either for outputs and inputs.
Then, any transfer is 8-bits long.
Extended Capability Port mode [Toc] [Back]
The ECP protocol was proposed as an advanced mode for communication with
printer and scanner type peripherals. Like the EPP protocol, ECP mode
provides for a high performance bidirectional communication path between
the host adapter and the peripheral.
ECP protocol features include:
Run_Length_Encoding (RLE) data compression for host adapters
FIFOs for both the forward and reverse channels
DMA as well as programmed I/O for the host register interface.
Enhanced Parallel Port mode [Toc] [Back]
The EPP protocol was originally developed as a means to provide a high
performance parallel port link that would still be compatible with the
standard parallel port.
The EPP mode has two types of cycle: address and data. What makes the
difference at hardware level is the strobe of the byte placed on the data
lines. Data are strobed with nAutofeed, addresses are strobed with nSelectin
signals.
A particularity of the ISA implementation of the EPP protocol is that an
EPP cycle fits in an ISA cycle. In this fashion, parallel port peripherals
can operate at close to the same performance levels as an equivalent
ISA plug-in card.
At software level, you may implement the protocol you wish, using data
and address cycles as you want. This is for the IEEE1284 compatible
part. Then, peripheral vendors may implement protocol handshake with the
following status lines: PError, nFault and Select. Try to know how these
lines toggle with your peripheral, allowing the peripheral to request
more data, stop the transfer and so on.
At any time, the peripheral may interrupt the host with the nAck signal
without disturbing the current transfer.
Mixed modes [Toc] [Back]
Some manufacturers, like SMC, have implemented chipsets that support
mixed modes. With such chipsets, mode switching is available at any time
by accessing the extended control register.
IEEE1284-1994 Standard [Toc] [Back] Background
This standard is also named "IEEE Standard Signaling Method for a Bidirectional
Parallel Peripheral Interface for Personal Computers". It
defines a signaling method for asynchronous, fully interlocked, bidirectional
parallel communications between hosts and printers or other
peripherals. It also specifies a format for a peripheral identification
string and a method of returning this string to the host outside of the
bidirectional data stream.
This standard is architecture independent and only specifies dialog handshake
at signal level. One should refer to architecture specific documentation
in order to manipulate machine dependent registers, mapped memory
or other methods to control these signals.
The IEEE1284 protocol is fully oriented with all supported parallel port
modes. The computer acts as master and the peripheral as slave.
Any transfer is defined as a finite state automate. It allows software
to properly manage the fully interlocked scheme of the signaling method.
The compatible mode is supported "as is" without any negotiation because
it is compatible. Any other mode must be firstly negotiated by the host
to check it is supported by the peripheral, then to enter one of the forward
idle states.
At any time, the slave may want to send data to the host. This is only
possible from forward idle states (nibble, byte, ecp...). So, the host
must have previously negotiated to permit the peripheral to request
transfer. Interrupt lines may be dedicated to the requesting signals to
prevent time consuming polling methods.
But peripheral requests are only a hint to the master host. If the host
accepts the transfer, it must firstly negotiate the reverse mode and then
starts the transfer. At any time during reverse transfer, the host may
terminate the transfer or the slave may drive wires to signal that no
more data is available.
Implementation [Toc] [Back]
IEEE1284 Standard support has been implemented at the top of the ppbus
system as a set of procedures that perform high level functions like
negotiation, termination, transfer in any mode without bothering you with
low level characteristics of the standard.
IEEE1284 interacts with the ppbus system as least as possible. That
means you still have to request the ppbus when you want to access it, the
negotiate function doesn't do it for you. And of course, release it
later.
adapter, ppbus and device layers
First, there is the adapter layer, the lowest of the ppbus system. It
provides chipset abstraction throw a set of low level functions that maps
the logical model to the underlying hardware.
Secondly, there is the ppbus layer that provides functions to:
1. share the parallel port bus among the daisy-chain like connected
devices
2. manage devices linked to ppbus
3. propose an arch-independent interface to access the hardware
layer.
Finally, the device layer gathers the parallel peripheral device drivers.
Parallel modes management [Toc] [Back]
We have to differentiate operating modes at various ppbus system layers.
Actually, ppbus and adapter operating modes on one hands and for each
one, current and available modes are separated.
With this level of abstraction a particular chipset may commute from any
native mode the any other mode emulated with extended modes without disturbing
upper layers. For example, most chipsets support NIBBLE mode as
native and emulated with ECP and/or EPP.
This architecture should support IEEE1284-1994 modes.
The boot process
The boot process starts with the probe phasis of the ppc(4) driver during
ISA bus (PC architecture) initialization. During attachment of the ppc
driver, a new ppbus structure is allocated, then probe and attachment for
this new bus node are called.
ppbus attachment tries to detect any PnP parallel peripheral (according
to Plug and Play Parallel Port Devices draft from (c)1993-4 Microsoft
Corporation) then probes and attaches known device drivers.
During probe, device drivers are supposed to request the ppbus and try to
set their operating mode. This mode will be saved in the context structure
and returned each time the driver requests the ppbus.
Bus allocation and interrupts [Toc] [Back]
ppbus allocation is mandatory not to corrupt I/O of other devices. An
other usage of ppbus allocation is to reserve the port and receive incoming
interrupts.
High level interrupt handlers are connected to the ppbus system thanks to
the newbus BUS_SETUP_INTR() and BUS_TEARDOWN_INTR() functions. But, in
order to attach a handler, drivers must own the bus. Consequently, a
ppbus request is mandatory in order to call the above functions (see
existing drivers for more info). Note that the interrupt handler is automatically
released when the ppbus is released.
Microsequences [Toc] [Back]
Microsequences is a general purpose mechanism to allow fast low-level
manipulation of the parallel port. Microsequences may be used to do
either standard (in IEEE1284 modes) or non-standard transfers. The philosophy
of microsequences is to avoid the overhead of the ppbus layer and
do most of the job at adapter level.
A microsequence is an array of opcodes and parameters. Each opcode codes
an operation (opcodes are described in microseq(9)). Standard I/O operations
are implemented at ppbus level whereas basic I/O operations and
microseq language are coded at adapter level for efficiency.
As an example, the vpo(4) driver uses microsequences to implement:
+o a modified version of the NIBBLE transfer mode
+o various I/O sequences to initialize, select and allocate the
peripheral
lpt(4), plip(4), ppc(4), ppi(4), vpo(4)
The ppbus manual page first appeared in FreeBSD 3.0.
This manual page was written by Nicolas Souchu.
FreeBSD 5.2.1 March 1, 1998 FreeBSD 5.2.1 [ Back ] |