*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zunmbr (3)              
Title
Content
Arch
Section
 

Contents


ZUNMBR(3F)							    ZUNMBR(3F)


NAME    [Toc]    [Back]

     ZUNMBR - VECT = 'Q', ZUNMBR overwrites the	general	complex	M-by-N matrix
     C with  SIDE = 'L'	SIDE = 'R' TRANS = 'N'

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZUNMBR(	VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
			LWORK, INFO )

	 CHARACTER	SIDE, TRANS, VECT

	 INTEGER	INFO, K, LDA, LDC, LWORK, M, N

	 COMPLEX*16	A( LDA,	* ), C(	LDC, * ), TAU( * ), WORK( LWORK	)

PURPOSE    [Toc]    [Back]

     If	VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix	C with
		     SIDE = 'L'	    SIDE = 'R' TRANS = 'N':	 Q * C
     C * Q TRANS = 'C':	     Q**H * C	    C *	Q**H

     If	VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix	C with
		     SIDE = 'L'	    SIDE = 'R'
     TRANS = 'N':      P * C	      C	* P
     TRANS = 'C':      P**H * C	      C	* P**H

     Here Q and	P**H are the unitary matrices determined by ZGEBRD when
     reducing a	complex	matrix A to bidiagonal form: A = Q * B * P**H. Q and
     P**H are defined as products of elementary	reflectors H(i)	and G(i)
     respectively.

     Let nq = m	if SIDE	= 'L' and nq = n if SIDE = 'R'.	Thus nq	is the order
     of	the unitary matrix Q or	P**H that is applied.

     If	VECT = 'Q', A is assumed to have been an NQ-by-K matrix:  if nq	>= k,
     Q = H(1) H(2) . . . H(k);
     if	nq < k,	Q = H(1) H(2) .	. . H(nq-1).

     If	VECT = 'P', A is assumed to have been a	K-by-NQ	matrix:	 if k <	nq, P
     = G(1) G(2) . . . G(k);
     if	k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS    [Toc]    [Back]

     VECT    (input) CHARACTER*1
	     = 'Q': apply Q or Q**H;
	     = 'P': apply P or P**H.

     SIDE    (input) CHARACTER*1
	     = 'L': apply Q, Q**H, P or	P**H from the Left;
	     = 'R': apply Q, Q**H, P or	P**H from the Right.






									Page 1






ZUNMBR(3F)							    ZUNMBR(3F)



     TRANS   (input) CHARACTER*1
	     = 'N':  No	transpose, apply Q or P;
	     = 'C':  Conjugate transpose, apply	Q**H or	P**H.

     M	     (input) INTEGER
	     The number	of rows	of the matrix C. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix C. N >= 0.

     K	     (input) INTEGER
	     If	VECT = 'Q', the	number of columns in the original matrix
	     reduced by	ZGEBRD.	 If VECT = 'P',	the number of rows in the
	     original matrix reduced by	ZGEBRD.	 K >= 0.

     A	     (input) COMPLEX*16	array, dimension
	     (LDA,min(nq,K)) if	VECT = 'Q' (LDA,nq)	   if VECT = 'P' The
	     vectors which define the elementary reflectors H(i) and G(i),
	     whose products determine the matrices Q and P, as returned	by
	     ZGEBRD.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  If VECT = 'Q', LDA >=
	     max(1,nq);	if VECT	= 'P', LDA >= max(1,min(nq,K)).

     TAU     (input) COMPLEX*16	array, dimension (min(nq,K))
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i) or G(i) which	determines Q or	P, as returned by ZGEBRD in
	     the array argument	TAUQ or	TAUP.

     C	     (input/output) COMPLEX*16 array, dimension	(LDC,N)
	     On	entry, the M-by-N matrix C.  On	exit, C	is overwritten by Q*C
	     or	Q**H*C or C*Q**H or C*Q	or P*C or P**H*C or C*P	or C*P**H.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M).

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If SIDE = 'L', LWORK >=
	     max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum
	     performance LWORK >= N*NB if SIDE = 'L', and LWORK	>= M*NB	if
	     SIDE = 'R', where NB is the optimal blocksize.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
ZUNMBR(3F)							    ZUNMBR(3F)


NAME    [Toc]    [Back]

     ZUNMBR - VECT = 'Q', ZUNMBR overwrites the	general	complex	M-by-N matrix
     C with  SIDE = 'L'	SIDE = 'R' TRANS = 'N'

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZUNMBR(	VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
			LWORK, INFO )

	 CHARACTER	SIDE, TRANS, VECT

	 INTEGER	INFO, K, LDA, LDC, LWORK, M, N

	 COMPLEX*16	A( LDA,	* ), C(	LDC, * ), TAU( * ), WORK( LWORK	)

PURPOSE    [Toc]    [Back]

     If	VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix	C with
		     SIDE = 'L'	    SIDE = 'R' TRANS = 'N':	 Q * C
     C * Q TRANS = 'C':	     Q**H * C	    C *	Q**H

     If	VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix	C with
		     SIDE = 'L'	    SIDE = 'R'
     TRANS = 'N':      P * C	      C	* P
     TRANS = 'C':      P**H * C	      C	* P**H

     Here Q and	P**H are the unitary matrices determined by ZGEBRD when
     reducing a	complex	matrix A to bidiagonal form: A = Q * B * P**H. Q and
     P**H are defined as products of elementary	reflectors H(i)	and G(i)
     respectively.

     Let nq = m	if SIDE	= 'L' and nq = n if SIDE = 'R'.	Thus nq	is the order
     of	the unitary matrix Q or	P**H that is applied.

     If	VECT = 'Q', A is assumed to have been an NQ-by-K matrix:  if nq	>= k,
     Q = H(1) H(2) . . . H(k);
     if	nq < k,	Q = H(1) H(2) .	. . H(nq-1).

     If	VECT = 'P', A is assumed to have been a	K-by-NQ	matrix:	 if k <	nq, P
     = G(1) G(2) . . . G(k);
     if	k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS    [Toc]    [Back]

     VECT    (input) CHARACTER*1
	     = 'Q': apply Q or Q**H;
	     = 'P': apply P or P**H.

     SIDE    (input) CHARACTER*1
	     = 'L': apply Q, Q**H, P or	P**H from the Left;
	     = 'R': apply Q, Q**H, P or	P**H from the Right.






									Page 1






ZUNMBR(3F)							    ZUNMBR(3F)



     TRANS   (input) CHARACTER*1
	     = 'N':  No	transpose, apply Q or P;
	     = 'C':  Conjugate transpose, apply	Q**H or	P**H.

     M	     (input) INTEGER
	     The number	of rows	of the matrix C. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix C. N >= 0.

     K	     (input) INTEGER
	     If	VECT = 'Q', the	number of columns in the original matrix
	     reduced by	ZGEBRD.	 If VECT = 'P',	the number of rows in the
	     original matrix reduced by	ZGEBRD.	 K >= 0.

     A	     (input) COMPLEX*16	array, dimension
	     (LDA,min(nq,K)) if	VECT = 'Q' (LDA,nq)	   if VECT = 'P' The
	     vectors which define the elementary reflectors H(i) and G(i),
	     whose products determine the matrices Q and P, as returned	by
	     ZGEBRD.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  If VECT = 'Q', LDA >=
	     max(1,nq);	if VECT	= 'P', LDA >= max(1,min(nq,K)).

     TAU     (input) COMPLEX*16	array, dimension (min(nq,K))
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i) or G(i) which	determines Q or	P, as returned by ZGEBRD in
	     the array argument	TAUQ or	TAUP.

     C	     (input/output) COMPLEX*16 array, dimension	(LDC,N)
	     On	entry, the M-by-N matrix C.  On	exit, C	is overwritten by Q*C
	     or	Q**H*C or C*Q**H or C*Q	or P*C or P**H*C or C*P	or C*P**H.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M).

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If SIDE = 'L', LWORK >=
	     max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum
	     performance LWORK >= N*NB if SIDE = 'L', and LWORK	>= M*NB	if
	     SIDE = 'R', where NB is the optimal blocksize.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
cunmbr IRIX VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
dormbr IRIX VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
sormbr IRIX VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
zunmrq IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
cunmqr IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
zunmql IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
zunmqr IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
zunmr2 IRIX overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L'
cunmrq IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
cunmtr IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service