*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/ztgevc (3)              
Title
Content
Arch
Section
 

Contents


ZTGEVC(3F)							    ZTGEVC(3F)


NAME    [Toc]    [Back]

     ZTGEVC - compute some or all of the right and/or left generalized
     eigenvectors of a pair of complex upper triangular	matrices (A,B)

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZTGEVC(	SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR,
			LDVR, MM, M, WORK, RWORK, INFO )

	 CHARACTER	HOWMNY,	SIDE

	 INTEGER	INFO, LDA, LDB,	LDVL, LDVR, M, MM, N

	 LOGICAL	SELECT(	* )

	 DOUBLE		PRECISION RWORK( * )

	 COMPLEX*16	A( LDA,	* ), B(	LDB, * ), VL( LDVL, * ), VR( LDVR, *
			), WORK( * )

PURPOSE    [Toc]    [Back]

     ZTGEVC computes some or all of the	right and/or left generalized
     eigenvectors of a pair of complex upper triangular	matrices (A,B).

     The right generalized eigenvector x and the left generalized eigenvector
     y of (A,B)	corresponding to a generalized eigenvalue w are	defined	by:

	     (A	- wB) *	x = 0  and  y**H * (A -	wB) = 0

     where y**H	denotes	the conjugate tranpose of y.

     If	an eigenvalue w	is determined by zero diagonal elements	of both	A and
     B,	a unit vector is returned as the corresponding eigenvector.

     If	all eigenvectors are requested,	the routine may	either return the
     matrices X	and/or Y of right or left eigenvectors of (A,B), or the
     products Z*X and/or Q*Y, where Z and Q are	input unitary matrices.	 If
     (A,B) was obtained	from the generalized Schur factorization of an
     original pair of matrices
	(A0,B0)	= (Q*A*Z**H,Q*B*Z**H),
     then Z*X and Q*Y are the matrices of right	or left	eigenvectors of	A.

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'R': compute right eigenvectors only;
	     = 'L': compute left eigenvectors only;
	     = 'B': compute both right and left	eigenvectors.

     HOWMNY  (input) CHARACTER*1
	     = 'A': compute all	right and/or left eigenvectors;
	     = 'B': compute all	right and/or left eigenvectors,	and
	     backtransform them	using the input	matrices supplied in VR	and/or



									Page 1






ZTGEVC(3F)							    ZTGEVC(3F)



	     VL; = 'S':	compute	selected right and/or left eigenvectors,
	     specified by the logical array SELECT.

     SELECT  (input) LOGICAL array, dimension (N)
	     If	HOWMNY='S', SELECT specifies the eigenvectors to be computed.
	     If	HOWMNY='A' or 'B', SELECT is not referenced.  To select	the
	     eigenvector corresponding to the j-th eigenvalue, SELECT(j) must
	     be	set to .TRUE..

     N	     (input) INTEGER
	     The order of the matrices A and B.	 N >= 0.

     A	     (input) COMPLEX*16	array, dimension (LDA,N)
	     The upper triangular matrix A.

     LDA     (input) INTEGER
	     The leading dimension of array A.	LDA >= max(1,N).

     B	     (input) COMPLEX*16	array, dimension (LDB,N)
	     The upper triangular matrix B.  B must have real diagonal
	     elements.

     LDB     (input) INTEGER
	     The leading dimension of array B.	LDB >= max(1,N).

     VL	     (input/output) COMPLEX*16 array, dimension	(LDVL,MM)
	     On	entry, if SIDE = 'L' or	'B' and	HOWMNY = 'B', VL must contain
	     an	N-by-N matrix Q	(usually the unitary matrix Q of left Schur
	     vectors returned by ZHGEQZ).  On exit, if SIDE = 'L' or 'B', VL
	     contains:	if HOWMNY = 'A', the matrix Y of left eigenvectors of
	     (A,B); if HOWMNY =	'B', the matrix	Q*Y; if	HOWMNY = 'S', the left
	     eigenvectors of (A,B) specified by	SELECT,	stored consecutively
	     in	the columns of VL, in the same order as	their eigenvalues.  If
	     SIDE = 'R', VL is not referenced.

     LDVL    (input) INTEGER
	     The leading dimension of array VL.	 LDVL >= max(1,N) if SIDE =
	     'L' or 'B'; LDVL >= 1 otherwise.

     VR	     (input/output) COMPLEX*16 array, dimension	(LDVR,MM)
	     On	entry, if SIDE = 'R' or	'B' and	HOWMNY = 'B', VR must contain
	     an	N-by-N matrix Q	(usually the unitary matrix Z of right Schur
	     vectors returned by ZHGEQZ).  On exit, if SIDE = 'R' or 'B', VR
	     contains:	if HOWMNY = 'A', the matrix X of right eigenvectors of
	     (A,B); if HOWMNY =	'B', the matrix	Z*X; if	HOWMNY = 'S', the
	     right eigenvectors	of (A,B) specified by SELECT, stored
	     consecutively in the columns of VR, in the	same order as their
	     eigenvalues.  If SIDE = 'L', VR is	not referenced.

     LDVR    (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= max(1,N) if SIDE
	     = 'R' or 'B'; LDVR	>= 1 otherwise.



									Page 2






ZTGEVC(3F)							    ZTGEVC(3F)



     MM	     (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= max(1,N) if SIDE
	     = 'R' or 'B'; LDVR	>= 1 otherwise.

     MM	     (input) INTEGER
	     The number	of columns in the arrays VL and/or VR. MM >= M.

     M	     (output) INTEGER
	     The number	of columns in the arrays VL and/or VR actually used to
	     store the eigenvectors.  If HOWMNY	= 'A' or 'B', M	is set to N.
	     Each selected eigenvector occupies	one column.

     WORK    (workspace) COMPLEX*16 array, dimension (2*N)

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (2*N)

     INFO    (output) INTEGER
	     = 0:  successful exit.
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
ZTGEVC(3F)							    ZTGEVC(3F)


NAME    [Toc]    [Back]

     ZTGEVC - compute some or all of the right and/or left generalized
     eigenvectors of a pair of complex upper triangular	matrices (A,B)

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZTGEVC(	SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR,
			LDVR, MM, M, WORK, RWORK, INFO )

	 CHARACTER	HOWMNY,	SIDE

	 INTEGER	INFO, LDA, LDB,	LDVL, LDVR, M, MM, N

	 LOGICAL	SELECT(	* )

	 DOUBLE		PRECISION RWORK( * )

	 COMPLEX*16	A( LDA,	* ), B(	LDB, * ), VL( LDVL, * ), VR( LDVR, *
			), WORK( * )

PURPOSE    [Toc]    [Back]

     ZTGEVC computes some or all of the	right and/or left generalized
     eigenvectors of a pair of complex upper triangular	matrices (A,B).

     The right generalized eigenvector x and the left generalized eigenvector
     y of (A,B)	corresponding to a generalized eigenvalue w are	defined	by:

	     (A	- wB) *	x = 0  and  y**H * (A -	wB) = 0

     where y**H	denotes	the conjugate tranpose of y.

     If	an eigenvalue w	is determined by zero diagonal elements	of both	A and
     B,	a unit vector is returned as the corresponding eigenvector.

     If	all eigenvectors are requested,	the routine may	either return the
     matrices X	and/or Y of right or left eigenvectors of (A,B), or the
     products Z*X and/or Q*Y, where Z and Q are	input unitary matrices.	 If
     (A,B) was obtained	from the generalized Schur factorization of an
     original pair of matrices
	(A0,B0)	= (Q*A*Z**H,Q*B*Z**H),
     then Z*X and Q*Y are the matrices of right	or left	eigenvectors of	A.

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'R': compute right eigenvectors only;
	     = 'L': compute left eigenvectors only;
	     = 'B': compute both right and left	eigenvectors.

     HOWMNY  (input) CHARACTER*1
	     = 'A': compute all	right and/or left eigenvectors;
	     = 'B': compute all	right and/or left eigenvectors,	and
	     backtransform them	using the input	matrices supplied in VR	and/or



									Page 1






ZTGEVC(3F)							    ZTGEVC(3F)



	     VL; = 'S':	compute	selected right and/or left eigenvectors,
	     specified by the logical array SELECT.

     SELECT  (input) LOGICAL array, dimension (N)
	     If	HOWMNY='S', SELECT specifies the eigenvectors to be computed.
	     If	HOWMNY='A' or 'B', SELECT is not referenced.  To select	the
	     eigenvector corresponding to the j-th eigenvalue, SELECT(j) must
	     be	set to .TRUE..

     N	     (input) INTEGER
	     The order of the matrices A and B.	 N >= 0.

     A	     (input) COMPLEX*16	array, dimension (LDA,N)
	     The upper triangular matrix A.

     LDA     (input) INTEGER
	     The leading dimension of array A.	LDA >= max(1,N).

     B	     (input) COMPLEX*16	array, dimension (LDB,N)
	     The upper triangular matrix B.  B must have real diagonal
	     elements.

     LDB     (input) INTEGER
	     The leading dimension of array B.	LDB >= max(1,N).

     VL	     (input/output) COMPLEX*16 array, dimension	(LDVL,MM)
	     On	entry, if SIDE = 'L' or	'B' and	HOWMNY = 'B', VL must contain
	     an	N-by-N matrix Q	(usually the unitary matrix Q of left Schur
	     vectors returned by ZHGEQZ).  On exit, if SIDE = 'L' or 'B', VL
	     contains:	if HOWMNY = 'A', the matrix Y of left eigenvectors of
	     (A,B); if HOWMNY =	'B', the matrix	Q*Y; if	HOWMNY = 'S', the left
	     eigenvectors of (A,B) specified by	SELECT,	stored consecutively
	     in	the columns of VL, in the same order as	their eigenvalues.  If
	     SIDE = 'R', VL is not referenced.

     LDVL    (input) INTEGER
	     The leading dimension of array VL.	 LDVL >= max(1,N) if SIDE =
	     'L' or 'B'; LDVL >= 1 otherwise.

     VR	     (input/output) COMPLEX*16 array, dimension	(LDVR,MM)
	     On	entry, if SIDE = 'R' or	'B' and	HOWMNY = 'B', VR must contain
	     an	N-by-N matrix Q	(usually the unitary matrix Z of right Schur
	     vectors returned by ZHGEQZ).  On exit, if SIDE = 'R' or 'B', VR
	     contains:	if HOWMNY = 'A', the matrix X of right eigenvectors of
	     (A,B); if HOWMNY =	'B', the matrix	Z*X; if	HOWMNY = 'S', the
	     right eigenvectors	of (A,B) specified by SELECT, stored
	     consecutively in the columns of VR, in the	same order as their
	     eigenvalues.  If SIDE = 'L', VR is	not referenced.

     LDVR    (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= max(1,N) if SIDE
	     = 'R' or 'B'; LDVR	>= 1 otherwise.



									Page 2






ZTGEVC(3F)							    ZTGEVC(3F)



     MM	     (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= max(1,N) if SIDE
	     = 'R' or 'B'; LDVR	>= 1 otherwise.

     MM	     (input) INTEGER
	     The number	of columns in the arrays VL and/or VR. MM >= M.

     M	     (output) INTEGER
	     The number	of columns in the arrays VL and/or VR actually used to
	     store the eigenvectors.  If HOWMNY	= 'A' or 'B', M	is set to N.
	     Each selected eigenvector occupies	one column.

     WORK    (workspace) COMPLEX*16 array, dimension (2*N)

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (2*N)

     INFO    (output) INTEGER
	     = 0:  successful exit.
	     < 0:  if INFO = -i, the i-th argument had an illegal value.


									PPPPaaaaggggeeee 3333
[ Back ]
 Similar pages
Name OS Title
dtgevc IRIX compute some or all of the right and/or left generalized eigenvectors of a pair of real upper triangular matri
stgevc IRIX compute some or all of the right and/or left generalized eigenvectors of a pair of real upper triangular matri
ztrevc IRIX compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T
ctrevc IRIX compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T
ztgsja IRIX compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or trapezoidal) m
ctgsja IRIX compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or trapezoidal) m
cggbak IRIX form the right or left eigenvectors of a complex generalized eigenvalue problem A*x = lambda*B*x, by backward
zggbak IRIX form the right or left eigenvectors of a complex generalized eigenvalue problem A*x = lambda*B*x, by backward
stgsja IRIX compute the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matr
dtgsja IRIX compute the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matr
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service