*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> libblas/spr (3)              
Title
Content
Arch
Section
 

Contents


_SPR,_HPR(3F)							 _SPR,_HPR(3F)


NAME    [Toc]    [Back]

     dspr, sspr, zhpr, chpr - BLAS Level Two   Symmetric Packed	Matrix Rank 1
     Update


FORTRAN	77 SYNOPSIS
     subroutine	dspr( uplo, n, alpha, x, incx, ap )
	   character*1	      uplo
	   integer	      n, incx
	   double precision   alpha
	   double precision   ap(*), x(*)

     subroutine	sspr( uplo, n, alpha, x, incx, ap )
	   character*1	      uplo
	   integer	      n, incx
	   real		      alpha
	   real		      ap(*), x(*)

     subroutine	zhpr( uplo, n, alpha, x, incx, ap )
	   character*1	      uplo
	   integer	      n, incx
	   complex*16	      alpha
	   complex*16	      ap(*), x(*)

     subroutine	chpr( uplo, n, alpha, x, incx, ap )
	   character*1	      uplo
	   integer	      n, incx
	   complex	      alpha
	   complex	      ap(*), x(*)

C SYNOPSIS    [Toc]    [Back]

     void dspr(	uplo, n, alpha,	x, incx, ap )
	   MatrixTriangle     uplo;
	   Integer	      n, incx;
	   double	      alpha;
	   double	      (*ap)[ n*( n + 1 ) )/2 ],	(*x)[ n	];

     void sspr(	uplo, n, alpha,	x, incx, ap )
	   MatrixTriangle     uplo;
	   Integer	      n, incx;
	   float	      alpha;
	   float	      (*ap)[ n*( n + 1 ) )/2 ],	(*x)[ n	];

     void zhpr(	uplo, n, alpha,	x, incx, ap )
	   MatrixTriangle     uplo;
	   Integer	      n, incx;
	   Zomplex	      alpha;
	   Zomplex	      (*ap)[ n*( n + 1 ) )/2 ],	(*x)[ n	];

     void chpr(	uplo, n, alpha,	x, incx, ap )
	   MatrixTriangle     uplo;



									Page 1






_SPR,_HPR(3F)							 _SPR,_HPR(3F)



	   Integer	      n, incx;
	   Complex	      alpha;
	   Complex	      (*ap)[ n*( n + 1 ) )/2 ],	(*x)[ n	];

DESCRIPTION    [Toc]    [Back]

     dspr and sspr perform the symmetric rank 1	operation

	   A :=	alpha*x*x' + A,

     zhpr and chpr perform the hermitian rank 1	operation

	   A :=	alpha*x*conjg( x' ) + A,

     where alpha is a real/complex scalar, x is	an n element vector and	A is
     an	n by n symmetric/hermitian matrix, supplied in packed form.

PARAMETERS    [Toc]    [Back]

     uplo    On	entry, uplo specifies whether the upper	or lower triangular
	     part of the array A is to be referenced a follows:



	     FORTRAN
	     uplo = 'U'	or 'u'	 Only the upper	triangular part	of A
				 is to be referenced.
	     uplo = 'L'	or 'l'	 Only the lower	triangular part	of A
				 is to be referenced.

	     C
	     uplo = UpperTriangle     Only the lower triangular	part of	A
				      is to be referenced.
	     uplo = LowerTriangle     Only the lower triangular	part of	A
				      is to be referenced.

	     Unchanged on exit.

     n	     On	entry, n specifies the the order of the	matrix A.  n must be
	     at	least zero.
	     Unchanged on exit.

     alpha   specifies the scalar alpha.
	     Unchanged on exit.

     x	     Array of size at least ( 1	+ ( n -	1 )*abs( incx )	). Before
	     entry, the	incremented array x must contain the n element vector
	     x.
	     Unchanged on exit.






									Page 2






_SPR,_HPR(3F)							 _SPR,_HPR(3F)



     incx    On	entry, incx specifies the increment for	the elements of	x.
	     incx must not be zero.
	     Unchanged on exit.

     ap	     Array of size at least ( (	n*( n +	1 ) )/2	).
	     Before entry with uplo = 'U' or 'u' or the	array ap must contain
	     the upper triangular part of the symmetric/hermitian matrix
	     packed sequentially, column by column, so that ap(	1 ) contains
	     A(	1, 1 ),	ap( 2 )	and ap(	3 ) contain A( 1, 2 ) and A( 2,	2 )
	     respectively, and so on.

	     Before entry with UPLO = 'L' or 'l' or , the array	ap must
	     contain the lower triangular part of the symmetric/hermitian
	     matrix packed sequentially, column	by column, so that ap( 1 )
	     contains A( 1, 1 ), ap( 2 ) and ap( 3 ) contain A(	2, 1 ) and A(
	     3,	1 ) respectively, and so on.

	     Note that for the hermitian matrix	the imaginary parts of the
	     diagonal elements need not	be set,	they are assumed to be zero,
	     and on exit they are set to zero.

	     Unchanged on exit.

AUTHORS    [Toc]    [Back]

	  Jack Dongarra, Argonne National Laboratory.
	  Iain Duff, AERE Harwell.
	  Jeremy Du Croz, Numerical Algorithms Group Ltd.
	  Sven Hammarling, Numerical Algorithms	Group Ltd.


									PPPPaaaaggggeeee 3333
[ Back ]
 Similar pages
Name OS Title
spr2 IRIX BLAS Level Two Symmetric Packed Matrix Rank 2 Update FORTRAN 77 SYNOPSIS subroutine dspr2( uplo, n, alpha, n,
syr IRIX BLAS Level Two (Symmetric/Hermitian)Matrix Rank 1 Update FORTRAN 77 SYNOPSIS subroutine dsyr( uplo, n, alpha,
syr2 IRIX BLAS Level Two (Symmetric/Hermitian)Matrix Rank 2 Update FORTRAN 77 SYNOPSIS subroutine dsyr2( uplo, n, alpha,
syr2k IRIX BLAS level three Symmetric Rank 2K Update. FORTRAN 77 SYNOPSIS subroutine dsyr2k(uplo,trans,n,k,alpha,a,lda,b,
syrk IRIX BLAS level three Symmetric Rank K Update. FORTRAN 77 SYNOPSIS subroutine dsyrk( uplo, trans, n, k, alpha, a, l
her2k IRIX BLAS level three Hermitian Rank 2K Update FORTRAN 77 SYNOPSIS subroutine zher2k( uplo,trans,n,k,alpha,a,lda,b,
herk IRIX BLAS level three Hermitian Rank K Update FORTRAN 77 SYNOPSIS subroutine zherk(uplo,trans,n,k,alpha,a,lda,beta,
symm IRIX BLAS level three Symmetric Matrix Product FORTRAN 77 SYNOPSIS subroutine dsymm( side,uplo,m,n,alpha,a,lda,b,ld
hemm IRIX BLAS level three Hermitian Matrix Product FORTRAN 77 SYNOPSIS subroutine zhemm( side,uplo,m,n,alpha,a,lda,b,ld
trmm IRIX BLAS level three Matrix Product FORTRAN 77 SYNOPSIS subroutine dtrmm( side, uplo, transa, diag, m, n, alpha, a
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service