*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/sormtr (3)              
Title
Content
Arch
Section
 

Contents


SORMTR(3F)							    SORMTR(3F)


NAME    [Toc]    [Back]

     SORMTR - overwrite	the general real M-by-N	matrix C with	SIDE = 'L'
     SIDE = 'R'	TRANS =	'N'

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SORMTR(	SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
			LWORK, INFO )

	 CHARACTER	SIDE, TRANS, UPLO

	 INTEGER	INFO, LDA, LDC,	LWORK, M, N

	 REAL		A( LDA,	* ), C(	LDC, * ), TAU( * ), WORK( LWORK	)

PURPOSE    [Toc]    [Back]

     SORMTR overwrites the general real	M-by-N matrix C	with TRANS = 'T':
     Q**T * C	    C *	Q**T

     where Q is	a real orthogonal matrix of order nq, with nq =	m if SIDE =
     'L' and nq	= n if SIDE = 'R'. Q is	defined	as the product of nq-1
     elementary	reflectors, as returned	by SSYTRD:

     if	UPLO = 'U', Q =	H(nq-1)	. . . H(2) H(1);

     if	UPLO = 'L', Q =	H(1) H(2) . . .	H(nq-1).

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'L': apply Q or Q**T from the Left;
	     = 'R': apply Q or Q**T from the Right.

     UPLO    (input) CHARACTER*1
	     = 'U': Upper triangle of A	contains elementary reflectors from
	     SSYTRD; = 'L': Lower triangle of A	contains elementary reflectors
	     from SSYTRD.

     TRANS   (input) CHARACTER*1
	     = 'N':  No	transpose, apply Q;
	     = 'T':  Transpose,	apply Q**T.

     M	     (input) INTEGER
	     The number	of rows	of the matrix C. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix C. N >= 0.

     A	     (input) REAL array, dimension
	     (LDA,M) if	SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which
	     define the	elementary reflectors, as returned by SSYTRD.





									Page 1






SORMTR(3F)							    SORMTR(3F)



     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M) if SIDE =
	     'L'; LDA >= max(1,N) if SIDE = 'R'.

     TAU     (input) REAL array, dimension
	     (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the
	     scalar factor of the elementary reflector H(i), as	returned by
	     SSYTRD.

     C	     (input/output) REAL array,	dimension (LDC,N)
	     On	entry, the M-by-N matrix C.  On	exit, C	is overwritten by Q*C
	     or	Q**T*C or C*Q**T or C*Q.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M).

     WORK    (workspace/output)	REAL array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If SIDE = 'L', LWORK >=
	     max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum
	     performance LWORK >= N*NB if SIDE = 'L', and LWORK	>= M*NB	if
	     SIDE = 'R', where NB is the optimal blocksize.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
SORMTR(3F)							    SORMTR(3F)


NAME    [Toc]    [Back]

     SORMTR - overwrite	the general real M-by-N	matrix C with	SIDE = 'L'
     SIDE = 'R'	TRANS =	'N'

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SORMTR(	SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
			LWORK, INFO )

	 CHARACTER	SIDE, TRANS, UPLO

	 INTEGER	INFO, LDA, LDC,	LWORK, M, N

	 REAL		A( LDA,	* ), C(	LDC, * ), TAU( * ), WORK( LWORK	)

PURPOSE    [Toc]    [Back]

     SORMTR overwrites the general real	M-by-N matrix C	with TRANS = 'T':
     Q**T * C	    C *	Q**T

     where Q is	a real orthogonal matrix of order nq, with nq =	m if SIDE =
     'L' and nq	= n if SIDE = 'R'. Q is	defined	as the product of nq-1
     elementary	reflectors, as returned	by SSYTRD:

     if	UPLO = 'U', Q =	H(nq-1)	. . . H(2) H(1);

     if	UPLO = 'L', Q =	H(1) H(2) . . .	H(nq-1).

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'L': apply Q or Q**T from the Left;
	     = 'R': apply Q or Q**T from the Right.

     UPLO    (input) CHARACTER*1
	     = 'U': Upper triangle of A	contains elementary reflectors from
	     SSYTRD; = 'L': Lower triangle of A	contains elementary reflectors
	     from SSYTRD.

     TRANS   (input) CHARACTER*1
	     = 'N':  No	transpose, apply Q;
	     = 'T':  Transpose,	apply Q**T.

     M	     (input) INTEGER
	     The number	of rows	of the matrix C. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix C. N >= 0.

     A	     (input) REAL array, dimension
	     (LDA,M) if	SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which
	     define the	elementary reflectors, as returned by SSYTRD.





									Page 1






SORMTR(3F)							    SORMTR(3F)



     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M) if SIDE =
	     'L'; LDA >= max(1,N) if SIDE = 'R'.

     TAU     (input) REAL array, dimension
	     (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the
	     scalar factor of the elementary reflector H(i), as	returned by
	     SSYTRD.

     C	     (input/output) REAL array,	dimension (LDC,N)
	     On	entry, the M-by-N matrix C.  On	exit, C	is overwritten by Q*C
	     or	Q**T*C or C*Q**T or C*Q.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M).

     WORK    (workspace/output)	REAL array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If SIDE = 'L', LWORK >=
	     max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum
	     performance LWORK >= N*NB if SIDE = 'L', and LWORK	>= M*NB	if
	     SIDE = 'R', where NB is the optimal blocksize.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
sormr2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dorm2r IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dorm2l IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
sorml2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
sorm2l IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
sorm2r IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dormr2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dorml2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
cunml2 IRIX overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L'
cunmhr IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service