*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/sormqr (3)              
Title
Content
Arch
Section
 

Contents


SORMQR(3F)							    SORMQR(3F)


NAME    [Toc]    [Back]

     SORMQR - overwrite	the general real M-by-N	matrix C with	SIDE = 'L'
     SIDE = 'R'	TRANS =	'N'

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SORMQR(	SIDE, TRANS, M,	N, K, A, LDA, TAU, C, LDC, WORK,
			LWORK, INFO )

	 CHARACTER	SIDE, TRANS

	 INTEGER	INFO, K, LDA, LDC, LWORK, M, N

	 REAL		A( LDA,	* ), C(	LDC, * ), TAU( * ), WORK( LWORK	)

PURPOSE    [Toc]    [Back]

     SORMQR overwrites the general real	M-by-N matrix C	with TRANS = 'T':
     Q**T * C	    C *	Q**T

     where Q is	a real orthogonal matrix defined as the	product	of k
     elementary	reflectors

	   Q = H(1) H(2) . . . H(k)

     as	returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N if
     SIDE = 'R'.

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'L': apply Q or Q**T from the Left;
	     = 'R': apply Q or Q**T from the Right.

     TRANS   (input) CHARACTER*1
	     = 'N':  No	transpose, apply Q;
	     = 'T':  Transpose,	apply Q**T.

     M	     (input) INTEGER
	     The number	of rows	of the matrix C. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix C. N >= 0.

     K	     (input) INTEGER
	     The number	of elementary reflectors whose product defines the
	     matrix Q.	If SIDE	= 'L', M >= K >= 0; if SIDE = 'R', N >=	K >=
	     0.

     A	     (input) REAL array, dimension (LDA,K)
	     The i-th column must contain the vector which defines the
	     elementary	reflector H(i),	for i =	1,2,...,k, as returned by
	     SGEQRF in the first k columns of its array	argument A.  A is
	     modified by the routine but restored on exit.



									Page 1






SORMQR(3F)							    SORMQR(3F)



     LDA     (input) INTEGER
	     The leading dimension of the array	A.  If SIDE = 'L', LDA >=
	     max(1,M); if SIDE = 'R', LDA >= max(1,N).

     TAU     (input) REAL array, dimension (K)
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i), as returned by SGEQRF.

     C	     (input/output) REAL array,	dimension (LDC,N)
	     On	entry, the M-by-N matrix C.  On	exit, C	is overwritten by Q*C
	     or	Q**T*C or C*Q**T or C*Q.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M).

     WORK    (workspace/output)	REAL array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If SIDE = 'L', LWORK >=
	     max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum
	     performance LWORK >= N*NB if SIDE = 'L', and LWORK	>= M*NB	if
	     SIDE = 'R', where NB is the optimal blocksize.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
SORMQR(3F)							    SORMQR(3F)


NAME    [Toc]    [Back]

     SORMQR - overwrite	the general real M-by-N	matrix C with	SIDE = 'L'
     SIDE = 'R'	TRANS =	'N'

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SORMQR(	SIDE, TRANS, M,	N, K, A, LDA, TAU, C, LDC, WORK,
			LWORK, INFO )

	 CHARACTER	SIDE, TRANS

	 INTEGER	INFO, K, LDA, LDC, LWORK, M, N

	 REAL		A( LDA,	* ), C(	LDC, * ), TAU( * ), WORK( LWORK	)

PURPOSE    [Toc]    [Back]

     SORMQR overwrites the general real	M-by-N matrix C	with TRANS = 'T':
     Q**T * C	    C *	Q**T

     where Q is	a real orthogonal matrix defined as the	product	of k
     elementary	reflectors

	   Q = H(1) H(2) . . . H(k)

     as	returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N if
     SIDE = 'R'.

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'L': apply Q or Q**T from the Left;
	     = 'R': apply Q or Q**T from the Right.

     TRANS   (input) CHARACTER*1
	     = 'N':  No	transpose, apply Q;
	     = 'T':  Transpose,	apply Q**T.

     M	     (input) INTEGER
	     The number	of rows	of the matrix C. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix C. N >= 0.

     K	     (input) INTEGER
	     The number	of elementary reflectors whose product defines the
	     matrix Q.	If SIDE	= 'L', M >= K >= 0; if SIDE = 'R', N >=	K >=
	     0.

     A	     (input) REAL array, dimension (LDA,K)
	     The i-th column must contain the vector which defines the
	     elementary	reflector H(i),	for i =	1,2,...,k, as returned by
	     SGEQRF in the first k columns of its array	argument A.  A is
	     modified by the routine but restored on exit.



									Page 1






SORMQR(3F)							    SORMQR(3F)



     LDA     (input) INTEGER
	     The leading dimension of the array	A.  If SIDE = 'L', LDA >=
	     max(1,M); if SIDE = 'R', LDA >= max(1,N).

     TAU     (input) REAL array, dimension (K)
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i), as returned by SGEQRF.

     C	     (input/output) REAL array,	dimension (LDC,N)
	     On	entry, the M-by-N matrix C.  On	exit, C	is overwritten by Q*C
	     or	Q**T*C or C*Q**T or C*Q.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M).

     WORK    (workspace/output)	REAL array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If SIDE = 'L', LWORK >=
	     max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum
	     performance LWORK >= N*NB if SIDE = 'L', and LWORK	>= M*NB	if
	     SIDE = 'R', where NB is the optimal blocksize.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
sormr2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dorm2r IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dorm2l IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
sorml2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
sorm2l IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
sorm2r IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dormr2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
dorml2 IRIX overwrite the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' an
cunml2 IRIX overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L'
cunmhr IRIX overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service