*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlasv2 (3)              
Title
Content
Arch
Section
 

Contents


DLASV2(3F)							    DLASV2(3F)


NAME    [Toc]    [Back]

     DLASV2 - compute the singular value decomposition of a 2-by-2 triangular
     matrix  [ F G ]  [	0 H ]

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLASV2(	F, G, H, SSMIN,	SSMAX, SNR, CSR, SNL, CSL )

	 DOUBLE		PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN

PURPOSE    [Toc]    [Back]

     DLASV2 computes the singular value	decomposition of a 2-by-2 triangular
     matrix
	[  F   G  ]
	[  0   H  ].  On return, abs(SSMAX) is the larger singular value,
     abs(SSMIN)	is the smaller singular	value, and (CSL,SNL) and (CSR,SNR) are
     the left and right	singular vectors for abs(SSMAX), giving	the
     decomposition

	[ CSL  SNL ] [	F   G  ] [ CSR -SNR ]  =  [ SSMAX   0	]
	[-SNL  CSL ] [	0   H  ] [ SNR	CSR ]	  [  0	  SSMIN	].

ARGUMENTS    [Toc]    [Back]

     F	     (input) DOUBLE PRECISION
	     The (1,1) element of the 2-by-2 matrix.

     G	     (input) DOUBLE PRECISION
	     The (1,2) element of the 2-by-2 matrix.

     H	     (input) DOUBLE PRECISION
	     The (2,2) element of the 2-by-2 matrix.

     SSMIN   (output) DOUBLE PRECISION
	     abs(SSMIN)	is the smaller singular	value.

     SSMAX   (output) DOUBLE PRECISION
	     abs(SSMAX)	is the larger singular value.

     SNL     (output) DOUBLE PRECISION
	     CSL     (output) DOUBLE PRECISION The vector (CSL,	SNL) is	a unit
	     left singular vector for the singular value abs(SSMAX).

     SNR     (output) DOUBLE PRECISION
	     CSR     (output) DOUBLE PRECISION The vector (CSR,	SNR) is	a unit
	     right singular vector for the singular value abs(SSMAX).

FURTHER	DETAILS
     Any input parameter may be	aliased	with any output	parameter.

     Barring over/underflow and	assuming a guard digit in subtraction, all
     output quantities are correct to within a few units in the	last place
     (ulps).



									Page 1






DLASV2(3F)							    DLASV2(3F)



     In	IEEE arithmetic, the code works	correctly if one matrix	element	is
     infinite.

     Overflow will not occur unless the	largest	singular value itself
     overflows or is within a few ulps of overflow. (On	machines with partial
     overflow, like the	Cray, overflow may occur if the	largest	singular value
     is	within a factor	of 2 of	overflow.)

     Underflow is harmless if underflow	is gradual. Otherwise, results may
     correspond	to a matrix modified by	perturbations of size near the
     underflow threshold.
DLASV2(3F)							    DLASV2(3F)


NAME    [Toc]    [Back]

     DLASV2 - compute the singular value decomposition of a 2-by-2 triangular
     matrix  [ F G ]  [	0 H ]

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLASV2(	F, G, H, SSMIN,	SSMAX, SNR, CSR, SNL, CSL )

	 DOUBLE		PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN

PURPOSE    [Toc]    [Back]

     DLASV2 computes the singular value	decomposition of a 2-by-2 triangular
     matrix
	[  F   G  ]
	[  0   H  ].  On return, abs(SSMAX) is the larger singular value,
     abs(SSMIN)	is the smaller singular	value, and (CSL,SNL) and (CSR,SNR) are
     the left and right	singular vectors for abs(SSMAX), giving	the
     decomposition

	[ CSL  SNL ] [	F   G  ] [ CSR -SNR ]  =  [ SSMAX   0	]
	[-SNL  CSL ] [	0   H  ] [ SNR	CSR ]	  [  0	  SSMIN	].

ARGUMENTS    [Toc]    [Back]

     F	     (input) DOUBLE PRECISION
	     The (1,1) element of the 2-by-2 matrix.

     G	     (input) DOUBLE PRECISION
	     The (1,2) element of the 2-by-2 matrix.

     H	     (input) DOUBLE PRECISION
	     The (2,2) element of the 2-by-2 matrix.

     SSMIN   (output) DOUBLE PRECISION
	     abs(SSMIN)	is the smaller singular	value.

     SSMAX   (output) DOUBLE PRECISION
	     abs(SSMAX)	is the larger singular value.

     SNL     (output) DOUBLE PRECISION
	     CSL     (output) DOUBLE PRECISION The vector (CSL,	SNL) is	a unit
	     left singular vector for the singular value abs(SSMAX).

     SNR     (output) DOUBLE PRECISION
	     CSR     (output) DOUBLE PRECISION The vector (CSR,	SNR) is	a unit
	     right singular vector for the singular value abs(SSMAX).

FURTHER	DETAILS
     Any input parameter may be	aliased	with any output	parameter.

     Barring over/underflow and	assuming a guard digit in subtraction, all
     output quantities are correct to within a few units in the	last place
     (ulps).



									Page 1






DLASV2(3F)							    DLASV2(3F)



     In	IEEE arithmetic, the code works	correctly if one matrix	element	is
     infinite.

     Overflow will not occur unless the	largest	singular value itself
     overflows or is within a few ulps of overflow. (On	machines with partial
     overflow, like the	Cray, overflow may occur if the	largest	singular value
     is	within a factor	of 2 of	overflow.)

     Underflow is harmless if underflow	is gradual. Otherwise, results may
     correspond	to a matrix modified by	perturbations of size near the
     underflow threshold.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
ztgsja IRIX compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or trapezoidal) m
ctgsja IRIX compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or trapezoidal) m
stgsja IRIX compute the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matr
dtgsja IRIX compute the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matr
cgesvd IRIX compute the singular value decomposition (SVD) of a complex Mby-N matrix A, optionally computing the left and/
sbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
zbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
dbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
dgesvd IRIX compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or
cbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service