*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlarfb (3)              
Title
Content
Arch
Section
 

Contents


DLARFB(3F)							    DLARFB(3F)


NAME    [Toc]    [Back]

     DLARFB - applie a real block reflector H or its transpose H' to a real m
     by	n matrix C, from either	the left or the	right

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLARFB(	SIDE, TRANS, DIRECT, STOREV, M,	N, K, V, LDV, T, LDT,
			C, LDC,	WORK, LDWORK )

	 CHARACTER	DIRECT,	SIDE, STOREV, TRANS

	 INTEGER	K, LDC,	LDT, LDV, LDWORK, M, N

	 DOUBLE		PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ), WORK(
			LDWORK,	* )

PURPOSE    [Toc]    [Back]

     DLARFB applies a real block reflector H or	its transpose H' to a real m
     by	n matrix C, from either	the left or the	right.

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'L': apply H or H' from the Left
	     = 'R': apply H or H' from the Right

     TRANS   (input) CHARACTER*1
	     = 'N': apply H (No	transpose)
	     = 'T': apply H' (Transpose)

     DIRECT  (input) CHARACTER*1
	     Indicates how H is	formed from a product of elementary reflectors
	     = 'F': H =	H(1) H(2) . . .	H(k) (Forward)
	     = 'B': H =	H(k) . . . H(2)	H(1) (Backward)

     STOREV  (input) CHARACTER*1
	     Indicates how the vectors which define the	elementary reflectors
	     are stored:
	     = 'C': Columnwise
	     = 'R': Rowwise

     M	     (input) INTEGER
	     The number	of rows	of the matrix C.

     N	     (input) INTEGER
	     The number	of columns of the matrix C.

     K	     (input) INTEGER
	     The order of the matrix T (= the number of	elementary reflectors
	     whose product defines the block reflector).






									Page 1






DLARFB(3F)							    DLARFB(3F)



     V	     (input) DOUBLE PRECISION array, dimension
	     (LDV,K) if	STOREV = 'C' (LDV,M) if	STOREV = 'R' and SIDE =	'L'
	     (LDV,N) if	STOREV = 'R' and SIDE =	'R' The	matrix V. See further
	     details.

     LDV     (input) INTEGER
	     The leading dimension of the array	V.  If STOREV =	'C' and	SIDE =
	     'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >=
	     max(1,N); if STOREV = 'R',	LDV >= K.

     T	     (input) DOUBLE PRECISION array, dimension (LDT,K)
	     The triangular k by k matrix T in the representation of the block
	     reflector.

     LDT     (input) INTEGER
	     The leading dimension of the array	T. LDT >= K.

     C	     (input/output) DOUBLE PRECISION array, dimension (LDC,N)
	     On	entry, the m by	n matrix C.  On	exit, C	is overwritten by H*C
	     or	H'*C or	C*H or C*H'.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDA >= max(1,M).

     WORK    (workspace) DOUBLE	PRECISION array, dimension (LDWORK,K)

     LDWORK  (input) INTEGER
	     The leading dimension of the array	WORK.  If SIDE = 'L', LDWORK
	     >=	max(1,N); if SIDE = 'R', LDWORK	>= max(1,M).
DLARFB(3F)							    DLARFB(3F)


NAME    [Toc]    [Back]

     DLARFB - applie a real block reflector H or its transpose H' to a real m
     by	n matrix C, from either	the left or the	right

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLARFB(	SIDE, TRANS, DIRECT, STOREV, M,	N, K, V, LDV, T, LDT,
			C, LDC,	WORK, LDWORK )

	 CHARACTER	DIRECT,	SIDE, STOREV, TRANS

	 INTEGER	K, LDC,	LDT, LDV, LDWORK, M, N

	 DOUBLE		PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ), WORK(
			LDWORK,	* )

PURPOSE    [Toc]    [Back]

     DLARFB applies a real block reflector H or	its transpose H' to a real m
     by	n matrix C, from either	the left or the	right.

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     = 'L': apply H or H' from the Left
	     = 'R': apply H or H' from the Right

     TRANS   (input) CHARACTER*1
	     = 'N': apply H (No	transpose)
	     = 'T': apply H' (Transpose)

     DIRECT  (input) CHARACTER*1
	     Indicates how H is	formed from a product of elementary reflectors
	     = 'F': H =	H(1) H(2) . . .	H(k) (Forward)
	     = 'B': H =	H(k) . . . H(2)	H(1) (Backward)

     STOREV  (input) CHARACTER*1
	     Indicates how the vectors which define the	elementary reflectors
	     are stored:
	     = 'C': Columnwise
	     = 'R': Rowwise

     M	     (input) INTEGER
	     The number	of rows	of the matrix C.

     N	     (input) INTEGER
	     The number	of columns of the matrix C.

     K	     (input) INTEGER
	     The order of the matrix T (= the number of	elementary reflectors
	     whose product defines the block reflector).






									Page 1






DLARFB(3F)							    DLARFB(3F)



     V	     (input) DOUBLE PRECISION array, dimension
	     (LDV,K) if	STOREV = 'C' (LDV,M) if	STOREV = 'R' and SIDE =	'L'
	     (LDV,N) if	STOREV = 'R' and SIDE =	'R' The	matrix V. See further
	     details.

     LDV     (input) INTEGER
	     The leading dimension of the array	V.  If STOREV =	'C' and	SIDE =
	     'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >=
	     max(1,N); if STOREV = 'R',	LDV >= K.

     T	     (input) DOUBLE PRECISION array, dimension (LDT,K)
	     The triangular k by k matrix T in the representation of the block
	     reflector.

     LDT     (input) INTEGER
	     The leading dimension of the array	T. LDT >= K.

     C	     (input/output) DOUBLE PRECISION array, dimension (LDC,N)
	     On	entry, the m by	n matrix C.  On	exit, C	is overwritten by H*C
	     or	H'*C or	C*H or C*H'.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDA >= max(1,M).

     WORK    (workspace) DOUBLE	PRECISION array, dimension (LDWORK,K)

     LDWORK  (input) INTEGER
	     The leading dimension of the array	WORK.  If SIDE = 'L', LDWORK
	     >=	max(1,N); if SIDE = 'R', LDWORK	>= max(1,M).


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
slarf IRIX applie a real elementary reflector H to a real m by n matrix C, from either the left or the right
slarfx IRIX applie a real elementary reflector H to a real m by n matrix C, from either the left or the right
dlarf IRIX applie a real elementary reflector H to a real m by n matrix C, from either the left or the right
dlarfx IRIX applie a real elementary reflector H to a real m by n matrix C, from either the left or the right
clarf IRIX applie a complex elementary reflector H to a complex M-by-N matrix C, from either the left or the right
zlarf IRIX applie a complex elementary reflector H to a complex M-by-N matrix C, from either the left or the right
zlarfx IRIX applie a complex elementary reflector H to a complex m by n matrix C, from either the left or the right
clarfx IRIX applie a complex elementary reflector H to a complex m by n matrix C, from either the left or the right
strexc IRIX reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that the diagonal block of T with row i
dtrexc IRIX reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that the diagonal block of T with row i
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service