*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlar2v (3)              
Title
Content
Arch
Section
 

Contents


DLAR2V(3F)							    DLAR2V(3F)


NAME    [Toc]    [Back]

     DLAR2V - applie a vector of real plane rotations from both	sides to a
     sequence of 2-by-2	real symmetric matrices, defined by the	elements of
     the vectors x, y and z

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAR2V(	N, X, Y, Z, INCX, C, S,	INCC )

	 INTEGER	INCC, INCX, N

	 DOUBLE		PRECISION C( * ), S( * ), X( * ), Y( * ), Z( * )

PURPOSE    [Toc]    [Back]

     DLAR2V applies a vector of	real plane rotations from both sides to	a
     sequence of 2-by-2	real symmetric matrices, defined by the	elements of
     the vectors x, y and z. For i = 1,2,...,n

	( x(i)	z(i) ) := (  c(i)  s(i)	) ( x(i)  z(i) ) ( c(i)	-s(i) )
	( z(i)	y(i) )	  ( -s(i)  c(i)	) ( z(i)  y(i) ) ( s(i)	 c(i) )

ARGUMENTS    [Toc]    [Back]

     N	     (input) INTEGER
	     The number	of plane rotations to be applied.

     X	     (input/output) DOUBLE PRECISION array,
	     dimension (1+(N-1)*INCX) The vector x.

     Y	     (input/output) DOUBLE PRECISION array,
	     dimension (1+(N-1)*INCX) The vector y.

     Z	     (input/output) DOUBLE PRECISION array,
	     dimension (1+(N-1)*INCX) The vector z.

     INCX    (input) INTEGER
	     The increment between elements of X, Y and	Z. INCX	> 0.

     C	     (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
	     The cosines of the	plane rotations.

     S	     (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
	     The sines of the plane rotations.

     INCC    (input) INTEGER
	     The increment between elements of C and S.	INCC > 0.
DLAR2V(3F)							    DLAR2V(3F)


NAME    [Toc]    [Back]

     DLAR2V - applie a vector of real plane rotations from both	sides to a
     sequence of 2-by-2	real symmetric matrices, defined by the	elements of
     the vectors x, y and z

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAR2V(	N, X, Y, Z, INCX, C, S,	INCC )

	 INTEGER	INCC, INCX, N

	 DOUBLE		PRECISION C( * ), S( * ), X( * ), Y( * ), Z( * )

PURPOSE    [Toc]    [Back]

     DLAR2V applies a vector of	real plane rotations from both sides to	a
     sequence of 2-by-2	real symmetric matrices, defined by the	elements of
     the vectors x, y and z. For i = 1,2,...,n

	( x(i)	z(i) ) := (  c(i)  s(i)	) ( x(i)  z(i) ) ( c(i)	-s(i) )
	( z(i)	y(i) )	  ( -s(i)  c(i)	) ( z(i)  y(i) ) ( s(i)	 c(i) )

ARGUMENTS    [Toc]    [Back]

     N	     (input) INTEGER
	     The number	of plane rotations to be applied.

     X	     (input/output) DOUBLE PRECISION array,
	     dimension (1+(N-1)*INCX) The vector x.

     Y	     (input/output) DOUBLE PRECISION array,
	     dimension (1+(N-1)*INCX) The vector y.

     Z	     (input/output) DOUBLE PRECISION array,
	     dimension (1+(N-1)*INCX) The vector z.

     INCX    (input) INTEGER
	     The increment between elements of X, Y and	Z. INCX	> 0.

     C	     (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
	     The cosines of the	plane rotations.

     S	     (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
	     The sines of the plane rotations.

     INCC    (input) INTEGER
	     The increment between elements of C and S.	INCC > 0.


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
slargv IRIX generate a vector of real plane rotations, determined by elements of the real vectors x and y
dlargv IRIX generate a vector of real plane rotations, determined by elements of the real vectors x and y
dlartv IRIX applie a vector of real plane rotations to elements of the real vectors x and y
slartv IRIX applie a vector of real plane rotations to elements of the real vectors x and y
zlartv IRIX applie a vector of complex plane rotations with real cosines to elements of the complex vectors x and y
clartv IRIX applie a vector of complex plane rotations with real cosines to elements of the complex vectors x and y
zlargv IRIX generate a vector of complex plane rotations with real cosines, determined by elements of the complex vectors
clargv IRIX generate a vector of complex plane rotations with real cosines, determined by elements of the complex vectors
zlar2v IRIX from both sides to a sequence of 2-by-2 complex Hermitian matrices,
clar2v IRIX from both sides to a sequence of 2-by-2 complex Hermitian matrices,
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service