DLAIC1(3F) DLAIC1(3F)
DLAIC1 - applie one step of incremental condition estimation in its
simplest version
SUBROUTINE DLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
INTEGER J, JOB
DOUBLE PRECISION C, GAMMA, S, SEST, SESTPR
DOUBLE PRECISION W( J ), X( J )
DLAIC1 applies one step of incremental condition estimation in its
simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then DLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w' gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular value
is computed.
Note that [s c]' and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x'*w.
JOB (input) INTEGER
= 1: an estimate for the largest singular value is computed.
= 2: an estimate for the smallest singular value is computed.
J (input) INTEGER
Length of X and W
X (input) DOUBLE PRECISION array, dimension (J)
The j-vector x.
Page 1
DLAIC1(3F) DLAIC1(3F)
SEST (input) DOUBLE PRECISION
Estimated singular value of j by j matrix L
W (input) DOUBLE PRECISION array, dimension (J)
The j-vector w.
GAMMA (input) DOUBLE PRECISION
The diagonal element gamma.
SEDTPR (output) DOUBLE PRECISION
Estimated singular value of (j+1) by (j+1) matrix Lhat.
S (output) DOUBLE PRECISION
Sine needed in forming xhat.
C (output) DOUBLE PRECISION
Cosine needed in forming xhat.
DLAIC1(3F) DLAIC1(3F)
DLAIC1 - applie one step of incremental condition estimation in its
simplest version
SUBROUTINE DLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
INTEGER J, JOB
DOUBLE PRECISION C, GAMMA, S, SEST, SESTPR
DOUBLE PRECISION W( J ), X( J )
DLAIC1 applies one step of incremental condition estimation in its
simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then DLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w' gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular value
is computed.
Note that [s c]' and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x'*w.
JOB (input) INTEGER
= 1: an estimate for the largest singular value is computed.
= 2: an estimate for the smallest singular value is computed.
J (input) INTEGER
Length of X and W
X (input) DOUBLE PRECISION array, dimension (J)
The j-vector x.
Page 1
DLAIC1(3F) DLAIC1(3F)
SEST (input) DOUBLE PRECISION
Estimated singular value of j by j matrix L
W (input) DOUBLE PRECISION array, dimension (J)
The j-vector w.
GAMMA (input) DOUBLE PRECISION
The diagonal element gamma.
SEDTPR (output) DOUBLE PRECISION
Estimated singular value of (j+1) by (j+1) matrix Lhat.
S (output) DOUBLE PRECISION
Sine needed in forming xhat.
C (output) DOUBLE PRECISION
Cosine needed in forming xhat.
PPPPaaaaggggeeee 2222 [ Back ]
|