*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlaed9 (3)              
Title
Content
Arch
Section
 

Contents


DLAED9(3F)							    DLAED9(3F)


NAME    [Toc]    [Back]

     DLAED9 - find the roots of	the secular equation, as defined by the	values
     in	D, Z, and RHO, between KSTART and KSTOP

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAED9(	K, KSTART, KSTOP, N, D,	Q, LDQ,	RHO, DLAMDA, W,	S,
			LDS, INFO )

	 INTEGER	INFO, K, KSTART, KSTOP,	LDQ, LDS, N

	 DOUBLE		PRECISION RHO

	 DOUBLE		PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, *
			), W( *	)

PURPOSE    [Toc]    [Back]

     DLAED9 finds the roots of the secular equation, as	defined	by the values
     in	D, Z, and RHO, between KSTART and KSTOP.  It makes the appropriate
     calls to DLAED4 and then stores the new matrix of eigenvectors for	use in
     calculating the next level	of Z vectors.

ARGUMENTS    [Toc]    [Back]

     K	     (input) INTEGER
	     The number	of terms in the	rational function to be	solved by
	     DLAED4.  K	>= 0.

     KSTART  (input) INTEGER
	     KSTOP   (input) INTEGER The updated eigenvalues Lambda(I),	KSTART
	     <=	I <= KSTOP are to be computed.	1 <= KSTART <= KSTOP <=	K.

     N	     (input) INTEGER
	     The number	of rows	and columns in the Q matrix.  N	>= K (delation
	     may result	in N > K).

     D	     (output) DOUBLE PRECISION array, dimension	(N)
	     D(I) contains the updated eigenvalues for KSTART <= I <= KSTOP.

     Q	     (workspace) DOUBLE	PRECISION array, dimension (LDQ,N)

     LDQ     (input) INTEGER
	     The leading dimension of the array	Q.  LDQ	>= max(	1, N ).

     RHO     (input) DOUBLE PRECISION
	     The value of the parameter	in the rank one	update equation.  RHO
	     >=	0 required.

     DLAMDA  (input) DOUBLE PRECISION array, dimension (K)
	     The first K elements of this array	contain	the old	roots of the
	     deflated updating problem.	 These are the poles of	the secular
	     equation.




									Page 1






DLAED9(3F)							    DLAED9(3F)



     W	     (input) DOUBLE PRECISION array, dimension (K)
	     The first K elements of this array	contain	the components of the
	     deflation-adjusted	updating vector.

     S	     (output) DOUBLE PRECISION array, dimension	(LDS, K)
	     Will contain the eigenvectors of the repaired matrix which	will
	     be	stored for subsequent Z	vector calculation and multiplied by
	     the previously accumulated	eigenvectors to	update the system.

     LDS     (input) INTEGER
	     The leading dimension of S.  LDS >= max( 1, K ).

     INFO    (output) INTEGER
	     = 0:  successful exit.
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  if INFO = 1,	an eigenvalue did not converge
DLAED9(3F)							    DLAED9(3F)


NAME    [Toc]    [Back]

     DLAED9 - find the roots of	the secular equation, as defined by the	values
     in	D, Z, and RHO, between KSTART and KSTOP

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAED9(	K, KSTART, KSTOP, N, D,	Q, LDQ,	RHO, DLAMDA, W,	S,
			LDS, INFO )

	 INTEGER	INFO, K, KSTART, KSTOP,	LDQ, LDS, N

	 DOUBLE		PRECISION RHO

	 DOUBLE		PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, *
			), W( *	)

PURPOSE    [Toc]    [Back]

     DLAED9 finds the roots of the secular equation, as	defined	by the values
     in	D, Z, and RHO, between KSTART and KSTOP.  It makes the appropriate
     calls to DLAED4 and then stores the new matrix of eigenvectors for	use in
     calculating the next level	of Z vectors.

ARGUMENTS    [Toc]    [Back]

     K	     (input) INTEGER
	     The number	of terms in the	rational function to be	solved by
	     DLAED4.  K	>= 0.

     KSTART  (input) INTEGER
	     KSTOP   (input) INTEGER The updated eigenvalues Lambda(I),	KSTART
	     <=	I <= KSTOP are to be computed.	1 <= KSTART <= KSTOP <=	K.

     N	     (input) INTEGER
	     The number	of rows	and columns in the Q matrix.  N	>= K (delation
	     may result	in N > K).

     D	     (output) DOUBLE PRECISION array, dimension	(N)
	     D(I) contains the updated eigenvalues for KSTART <= I <= KSTOP.

     Q	     (workspace) DOUBLE	PRECISION array, dimension (LDQ,N)

     LDQ     (input) INTEGER
	     The leading dimension of the array	Q.  LDQ	>= max(	1, N ).

     RHO     (input) DOUBLE PRECISION
	     The value of the parameter	in the rank one	update equation.  RHO
	     >=	0 required.

     DLAMDA  (input) DOUBLE PRECISION array, dimension (K)
	     The first K elements of this array	contain	the old	roots of the
	     deflated updating problem.	 These are the poles of	the secular
	     equation.




									Page 1






DLAED9(3F)							    DLAED9(3F)



     W	     (input) DOUBLE PRECISION array, dimension (K)
	     The first K elements of this array	contain	the components of the
	     deflation-adjusted	updating vector.

     S	     (output) DOUBLE PRECISION array, dimension	(LDS, K)
	     Will contain the eigenvectors of the repaired matrix which	will
	     be	stored for subsequent Z	vector calculation and multiplied by
	     the previously accumulated	eigenvectors to	update the system.

     LDS     (input) INTEGER
	     The leading dimension of S.  LDS >= max( 1, K ).

     INFO    (output) INTEGER
	     = 0:  successful exit.
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  if INFO = 1,	an eigenvalue did not converge


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
slaed3 IRIX find the roots of the secular equation, as defined by the values in D, W, and RHO, between KSTART and KSTOP
dlaed3 IRIX find the roots of the secular equation, as defined by the values in D, W, and RHO, between KSTART and KSTOP
swreg HP-UX register or unregister depots and roots
zgtsv IRIX solve the equation A*X = B,
sgtsv IRIX solve the equation A*X = B,
dgtsv IRIX solve the equation A*X = B,
cgtsv IRIX solve the equation A*X = B,
glblendequation IRIX set the blend equation
glblendequationext IRIX set the blend equation
dtrsyl IRIX solve the real Sylvester matrix equation
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service