*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dgttrs (3)              
Title
Content
Arch
Section
 

Contents


DGTTRS(3F)							    DGTTRS(3F)


NAME    [Toc]    [Back]

     DGTTRS - solve one	of the systems of equations  A*X = B or	A'*X = B,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DGTTRS(	TRANS, N, NRHS,	DL, D, DU, DU2,	IPIV, B, LDB, INFO )

	 CHARACTER	TRANS

	 INTEGER	INFO, LDB, N, NRHS

	 INTEGER	IPIV( *	)

	 DOUBLE		PRECISION B( LDB, * ), D( * ), DL( * ),	DU( * ), DU2(
			* )

PURPOSE    [Toc]    [Back]

     DGTTRS solves one of the systems of equations
	A*X = B	 or  A'*X = B, with a tridiagonal matrix A using the LU
     factorization computed by DGTTRF.

ARGUMENTS    [Toc]    [Back]

     TRANS   (input) CHARACTER
	     Specifies the form	of the system of equations:
	     = 'N':  A * X = B	(No transpose)
	     = 'T':  A'* X = B	(Transpose)
	     = 'C':  A'* X = B	(Conjugate transpose = Transpose)

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrix	B.  NRHS >= 0.

     DL	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) multipliers that	define the matrix L from the LU
	     factorization of A.

     D	     (input) DOUBLE PRECISION array, dimension (N)
	     The n diagonal elements of	the upper triangular matrix U from the
	     LU	factorization of A.

     DU	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) elements	of the first superdiagonal of U.

     DU2     (input) DOUBLE PRECISION array, dimension (N-2)
	     The (n-2) elements	of the second superdiagonal of U.

     IPIV    (input) INTEGER array, dimension (N)
	     The pivot indices;	for 1 <= i <= n, row i of the matrix was
	     interchanged with row IPIV(i).  IPIV(i) will always be either i



									Page 1






DGTTRS(3F)							    DGTTRS(3F)



	     or	i+1; IPIV(i) = i indicates a row interchange was not required.

     B	     (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
	     On	entry, the right hand side matrix B.  On exit, B is
	     overwritten by the	solution matrix	X.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
DGTTRS(3F)							    DGTTRS(3F)


NAME    [Toc]    [Back]

     DGTTRS - solve one	of the systems of equations  A*X = B or	A'*X = B,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DGTTRS(	TRANS, N, NRHS,	DL, D, DU, DU2,	IPIV, B, LDB, INFO )

	 CHARACTER	TRANS

	 INTEGER	INFO, LDB, N, NRHS

	 INTEGER	IPIV( *	)

	 DOUBLE		PRECISION B( LDB, * ), D( * ), DL( * ),	DU( * ), DU2(
			* )

PURPOSE    [Toc]    [Back]

     DGTTRS solves one of the systems of equations
	A*X = B	 or  A'*X = B, with a tridiagonal matrix A using the LU
     factorization computed by DGTTRF.

ARGUMENTS    [Toc]    [Back]

     TRANS   (input) CHARACTER
	     Specifies the form	of the system of equations:
	     = 'N':  A * X = B	(No transpose)
	     = 'T':  A'* X = B	(Transpose)
	     = 'C':  A'* X = B	(Conjugate transpose = Transpose)

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrix	B.  NRHS >= 0.

     DL	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) multipliers that	define the matrix L from the LU
	     factorization of A.

     D	     (input) DOUBLE PRECISION array, dimension (N)
	     The n diagonal elements of	the upper triangular matrix U from the
	     LU	factorization of A.

     DU	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) elements	of the first superdiagonal of U.

     DU2     (input) DOUBLE PRECISION array, dimension (N-2)
	     The (n-2) elements	of the second superdiagonal of U.

     IPIV    (input) INTEGER array, dimension (N)
	     The pivot indices;	for 1 <= i <= n, row i of the matrix was
	     interchanged with row IPIV(i).  IPIV(i) will always be either i



									Page 1






DGTTRS(3F)							    DGTTRS(3F)



	     or	i+1; IPIV(i) = i indicates a row interchange was not required.

     B	     (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
	     On	entry, the right hand side matrix B.  On exit, B is
	     overwritten by the	solution matrix	X.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
zgbtrs IRIX solve a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band matrix A using
cgbtrs IRIX solve a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band matrix A using
ssytrs IRIX solve a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T
sgbtrs IRIX solve a system of linear equations A * X = B or A' * X = B with a general band matrix A using the LU factoriza
dsytrs IRIX solve a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T
dgbtrs IRIX solve a system of linear equations A * X = B or A' * X = B with a general band matrix A using the LU factoriza
zhetrs IRIX solve a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U
csytrs IRIX solve a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U
chetrs IRIX solve a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U
zsytrs IRIX solve a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service