ZTRTRS(3F) ZTRTRS(3F)
ZTRTRS - solve a triangular system of the form A * X = B, A**T * X = B,
or A**H * X = B,
SUBROUTINE ZTRTRS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO )
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDA, LDB, N, NRHS
COMPLEX*16 A( LDA, * ), B( LDB, * )
ZTRTRS solves a triangular system of the form
where A is a triangular matrix of order N, and B is an N-by-NRHS matrix.
A check is made to verify that A is nonsingular.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of
the matrix B. NRHS >= 0.
A (input) COMPLEX*16 array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N upper
triangular part of the array A contains the upper triangular
matrix, and the strictly lower triangular part of A is not
referenced. If UPLO = 'L', the leading N-by-N lower triangular
part of the array A contains the lower triangular matrix, and the
strictly upper triangular part of A is not referenced. If DIAG =
'U', the diagonal elements of A are also not referenced and are
assumed to be 1.
Page 1
ZTRTRS(3F) ZTRTRS(3F)
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the right hand side matrix B. On exit, if INFO = 0,
the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions X have
not been computed.
ZTRTRS(3F) ZTRTRS(3F)
ZTRTRS - solve a triangular system of the form A * X = B, A**T * X = B,
or A**H * X = B,
SUBROUTINE ZTRTRS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO )
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDA, LDB, N, NRHS
COMPLEX*16 A( LDA, * ), B( LDB, * )
ZTRTRS solves a triangular system of the form
where A is a triangular matrix of order N, and B is an N-by-NRHS matrix.
A check is made to verify that A is nonsingular.
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of
the matrix B. NRHS >= 0.
A (input) COMPLEX*16 array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading N-by-N upper
triangular part of the array A contains the upper triangular
matrix, and the strictly lower triangular part of A is not
referenced. If UPLO = 'L', the leading N-by-N lower triangular
part of the array A contains the lower triangular matrix, and the
strictly upper triangular part of A is not referenced. If DIAG =
'U', the diagonal elements of A are also not referenced and are
assumed to be 1.
Page 1
ZTRTRS(3F) ZTRTRS(3F)
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the right hand side matrix B. On exit, if INFO = 0,
the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions X have
not been computed.
PPPPaaaaggggeeee 2222 [ Back ]
|