*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/ztrsyl (3)              
Title
Content
Arch
Section
 

Contents


ZTRSYL(3F)							    ZTRSYL(3F)


NAME    [Toc]    [Back]

     ZTRSYL - solve the	complex	Sylvester matrix equation

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZTRSYL(	TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
			SCALE, INFO )

	 CHARACTER	TRANA, TRANB

	 INTEGER	INFO, ISGN, LDA, LDB, LDC, M, N

	 DOUBLE		PRECISION SCALE

	 COMPLEX*16	A( LDA,	* ), B(	LDB, * ), C( LDC, * )

PURPOSE    [Toc]    [Back]

     ZTRSYL solves the complex Sylvester matrix	equation:

	op(A)*X	+ X*op(B) = scale*C or
	op(A)*X	- X*op(B) = scale*C,

     where op(A) = A or	A**H, and A and	B are both upper triangular. A is Mby-M
 and B	is N-by-N; the right hand side C and the solution X are	M-byN;
	and scale is an	output scale factor, set <= 1 to avoid overflow	in X.

ARGUMENTS    [Toc]    [Back]

     TRANA   (input) CHARACTER*1
	     Specifies the option op(A):
	     = 'N': op(A) = A	 (No transpose)
	     = 'C': op(A) = A**H (Conjugate transpose)

     TRANB   (input) CHARACTER*1
	     Specifies the option op(B):
	     = 'N': op(B) = B	 (No transpose)
	     = 'C': op(B) = B**H (Conjugate transpose)

     ISGN    (input) INTEGER
	     Specifies the sign	in the equation:
	     = +1: solve op(A)*X + X*op(B) = scale*C
	     = -1: solve op(A)*X - X*op(B) = scale*C

     M	     (input) INTEGER
	     The order of the matrix A,	and the	number of rows in the matrices
	     X and C. M	>= 0.

     N	     (input) INTEGER
	     The order of the matrix B,	and the	number of columns in the
	     matrices X	and C. N >= 0.






									Page 1






ZTRSYL(3F)							    ZTRSYL(3F)



     A	     (input) COMPLEX*16	array, dimension (LDA,M)
	     The upper triangular matrix A.

     LDA     (input) INTEGER
	     The leading dimension of the array	A. LDA >= max(1,M).

     B	     (input) COMPLEX*16	array, dimension (LDB,N)
	     The upper triangular matrix B.

     LDB     (input) INTEGER
	     The leading dimension of the array	B. LDB >= max(1,N).

     C	     (input/output) COMPLEX*16 array, dimension	(LDC,N)
	     On	entry, the M-by-N right	hand side matrix C.  On	exit, C	is
	     overwritten by the	solution matrix	X.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M)

     SCALE   (output) DOUBLE PRECISION
	     The scale factor, scale, set <= 1 to avoid	overflow in X.

     INFO    (output) INTEGER
	     = 0: successful exit
	     < 0: if INFO = -i,	the i-th argument had an illegal value
	     = 1: A and	B have common or very close eigenvalues; perturbed
	     values were used to solve the equation (but the matrices A	and B
	     are unchanged).
ZTRSYL(3F)							    ZTRSYL(3F)


NAME    [Toc]    [Back]

     ZTRSYL - solve the	complex	Sylvester matrix equation

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZTRSYL(	TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
			SCALE, INFO )

	 CHARACTER	TRANA, TRANB

	 INTEGER	INFO, ISGN, LDA, LDB, LDC, M, N

	 DOUBLE		PRECISION SCALE

	 COMPLEX*16	A( LDA,	* ), B(	LDB, * ), C( LDC, * )

PURPOSE    [Toc]    [Back]

     ZTRSYL solves the complex Sylvester matrix	equation:

	op(A)*X	+ X*op(B) = scale*C or
	op(A)*X	- X*op(B) = scale*C,

     where op(A) = A or	A**H, and A and	B are both upper triangular. A is Mby-M
 and B	is N-by-N; the right hand side C and the solution X are	M-byN;
	and scale is an	output scale factor, set <= 1 to avoid overflow	in X.

ARGUMENTS    [Toc]    [Back]

     TRANA   (input) CHARACTER*1
	     Specifies the option op(A):
	     = 'N': op(A) = A	 (No transpose)
	     = 'C': op(A) = A**H (Conjugate transpose)

     TRANB   (input) CHARACTER*1
	     Specifies the option op(B):
	     = 'N': op(B) = B	 (No transpose)
	     = 'C': op(B) = B**H (Conjugate transpose)

     ISGN    (input) INTEGER
	     Specifies the sign	in the equation:
	     = +1: solve op(A)*X + X*op(B) = scale*C
	     = -1: solve op(A)*X - X*op(B) = scale*C

     M	     (input) INTEGER
	     The order of the matrix A,	and the	number of rows in the matrices
	     X and C. M	>= 0.

     N	     (input) INTEGER
	     The order of the matrix B,	and the	number of columns in the
	     matrices X	and C. N >= 0.






									Page 1






ZTRSYL(3F)							    ZTRSYL(3F)



     A	     (input) COMPLEX*16	array, dimension (LDA,M)
	     The upper triangular matrix A.

     LDA     (input) INTEGER
	     The leading dimension of the array	A. LDA >= max(1,M).

     B	     (input) COMPLEX*16	array, dimension (LDB,N)
	     The upper triangular matrix B.

     LDB     (input) INTEGER
	     The leading dimension of the array	B. LDB >= max(1,N).

     C	     (input/output) COMPLEX*16 array, dimension	(LDC,N)
	     On	entry, the M-by-N right	hand side matrix C.  On	exit, C	is
	     overwritten by the	solution matrix	X.

     LDC     (input) INTEGER
	     The leading dimension of the array	C. LDC >= max(1,M)

     SCALE   (output) DOUBLE PRECISION
	     The scale factor, scale, set <= 1 to avoid	overflow in X.

     INFO    (output) INTEGER
	     = 0: successful exit
	     < 0: if INFO = -i,	the i-th argument had an illegal value
	     = 1: A and	B have common or very close eigenvalues; perturbed
	     values were used to solve the equation (but the matrices A	and B
	     are unchanged).


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
dtrsyl IRIX solve the real Sylvester matrix equation
strsyl IRIX solve the real Sylvester matrix equation
cgtsv IRIX solve the equation A*X = B,
dgtsv IRIX solve the equation A*X = B,
sgtsv IRIX solve the equation A*X = B,
zgtsv IRIX solve the equation A*X = B,
chetrs IRIX solve a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U
zsytrs IRIX solve a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U
csytrs IRIX solve a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U
zhetrs IRIX solve a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service