*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zsteqr (3)              
Title
Content
Arch
Section
 

Contents


ZSTEQR(3F)							    ZSTEQR(3F)


NAME    [Toc]    [Back]

     ZSTEQR - compute all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the implicit QL	or QR method

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZSTEQR(	COMPZ, N, D, E,	Z, LDZ,	WORK, INFO )

	 CHARACTER	COMPZ

	 INTEGER	INFO, LDZ, N

	 DOUBLE		PRECISION D( * ), E( * ), WORK(	* )

	 COMPLEX*16	Z( LDZ,	* )

PURPOSE    [Toc]    [Back]

     ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the implicit QL	or QR method.  The
     eigenvectors of a full or band complex Hermitian matrix can also be found
     if	ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this	matrix to
     tridiagonal form.

ARGUMENTS    [Toc]    [Back]

     COMPZ   (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only.
	     = 'V':  Compute eigenvalues and eigenvectors of the original
	     Hermitian matrix.	On entry, Z must contain the unitary matrix
	     used to reduce the	original matrix	to tridiagonal form.  =	'I':
	     Compute eigenvalues and eigenvectors of the tridiagonal matrix.
	     Z is initialized to the identity matrix.

     N	     (input) INTEGER
	     The order of the matrix.  N >= 0.

     D	     (input/output) DOUBLE PRECISION array, dimension (N)
	     On	entry, the diagonal elements of	the tridiagonal	matrix.	 On
	     exit, if INFO = 0,	the eigenvalues	in ascending order.

     E	     (input/output) DOUBLE PRECISION array, dimension (N-1)
	     On	entry, the (n-1) subdiagonal elements of the tridiagonal
	     matrix.  On exit, E has been destroyed.

     Z	     (input/output) COMPLEX*16 array, dimension	(LDZ, N)
	     On	entry, if  COMPZ = 'V',	then Z contains	the unitary matrix
	     used in the reduction to tridiagonal form.	 On exit, if INFO = 0,
	     then if COMPZ = 'V', Z contains the orthonormal eigenvectors of
	     the original Hermitian matrix, and	if COMPZ = 'I',	Z contains the
	     orthonormal eigenvectors of the symmetric tridiagonal matrix.  If
	     COMPZ = 'N', then Z is not	referenced.





									Page 1






ZSTEQR(3F)							    ZSTEQR(3F)



     LDZ     (input) INTEGER
	     The leading dimension of the array	Z.  LDZ	>= 1, and if
	     eigenvectors are desired, then  LDZ >= max(1,N).

     WORK    (workspace) DOUBLE	PRECISION array, dimension (max(1,2*N-2))
	     If	COMPZ =	'N', then WORK is not referenced.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
	     > 0:  the algorithm has failed to find all	the eigenvalues	in a
	     total of 30*N iterations; if INFO = i, then i elements of E have
	     not converged to zero; on exit, D and E contain the elements of a
	     symmetric tridiagonal matrix which	is unitarily similar to	the
	     original matrix.
ZSTEQR(3F)							    ZSTEQR(3F)


NAME    [Toc]    [Back]

     ZSTEQR - compute all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the implicit QL	or QR method

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZSTEQR(	COMPZ, N, D, E,	Z, LDZ,	WORK, INFO )

	 CHARACTER	COMPZ

	 INTEGER	INFO, LDZ, N

	 DOUBLE		PRECISION D( * ), E( * ), WORK(	* )

	 COMPLEX*16	Z( LDZ,	* )

PURPOSE    [Toc]    [Back]

     ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the implicit QL	or QR method.  The
     eigenvectors of a full or band complex Hermitian matrix can also be found
     if	ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this	matrix to
     tridiagonal form.

ARGUMENTS    [Toc]    [Back]

     COMPZ   (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only.
	     = 'V':  Compute eigenvalues and eigenvectors of the original
	     Hermitian matrix.	On entry, Z must contain the unitary matrix
	     used to reduce the	original matrix	to tridiagonal form.  =	'I':
	     Compute eigenvalues and eigenvectors of the tridiagonal matrix.
	     Z is initialized to the identity matrix.

     N	     (input) INTEGER
	     The order of the matrix.  N >= 0.

     D	     (input/output) DOUBLE PRECISION array, dimension (N)
	     On	entry, the diagonal elements of	the tridiagonal	matrix.	 On
	     exit, if INFO = 0,	the eigenvalues	in ascending order.

     E	     (input/output) DOUBLE PRECISION array, dimension (N-1)
	     On	entry, the (n-1) subdiagonal elements of the tridiagonal
	     matrix.  On exit, E has been destroyed.

     Z	     (input/output) COMPLEX*16 array, dimension	(LDZ, N)
	     On	entry, if  COMPZ = 'V',	then Z contains	the unitary matrix
	     used in the reduction to tridiagonal form.	 On exit, if INFO = 0,
	     then if COMPZ = 'V', Z contains the orthonormal eigenvectors of
	     the original Hermitian matrix, and	if COMPZ = 'I',	Z contains the
	     orthonormal eigenvectors of the symmetric tridiagonal matrix.  If
	     COMPZ = 'N', then Z is not	referenced.





									Page 1






ZSTEQR(3F)							    ZSTEQR(3F)



     LDZ     (input) INTEGER
	     The leading dimension of the array	Z.  LDZ	>= 1, and if
	     eigenvectors are desired, then  LDZ >= max(1,N).

     WORK    (workspace) DOUBLE	PRECISION array, dimension (max(1,2*N-2))
	     If	COMPZ =	'N', then WORK is not referenced.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
	     > 0:  the algorithm has failed to find all	the eigenvalues	in a
	     total of 30*N iterations; if INFO = i, then i elements of E have
	     not converged to zero; on exit, D and E contain the elements of a
	     symmetric tridiagonal matrix which	is unitarily similar to	the
	     original matrix.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
sstevd IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
sstev IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
zstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
cstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
dstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
dstev IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
dstevd IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
sstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
cpteqr IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by f
dpteqr IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by f
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service