*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zstedc (3)              
Title
Content
Arch
Section
 

Contents


ZSTEDC(3F)							    ZSTEDC(3F)


NAME    [Toc]    [Back]

     ZSTEDC - compute all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the divide and conquer method

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZSTEDC(	COMPZ, N, D, E,	Z, LDZ,	WORK, LWORK, RWORK, LRWORK,
			IWORK, LIWORK, INFO )

	 CHARACTER	COMPZ

	 INTEGER	INFO, LDZ, LIWORK, LRWORK, LWORK, N

	 INTEGER	IWORK( * )

	 DOUBLE		PRECISION D( * ), E( * ), RWORK( * )

	 COMPLEX*16	WORK( *	), Z( LDZ, * )

PURPOSE    [Toc]    [Back]

     ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the divide and conquer method.	The
     eigenvectors of a full or band complex Hermitian matrix can also be found
     if	ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this	matrix to
     tridiagonal form.

     This code makes very mild assumptions about floating point	arithmetic. It
     will work on machines with	a guard	digit in add/subtract, or on those
     binary machines without guard digits which	subtract like the Cray X-MP,
     Cray Y-MP,	Cray C-90, or Cray-2.  It could	conceivably fail on
     hexadecimal or decimal machines without guard digits, but we know of
     none.  See	DLAED3 for details.

ARGUMENTS    [Toc]    [Back]

     COMPZ   (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only.
	     = 'I':  Compute eigenvectors of tridiagonal matrix	also.
	     = 'V':  Compute eigenvectors of original Hermitian	matrix also.
	     On	entry, Z contains the unitary matrix used to reduce the
	     original matrix to	tridiagonal form.

     N	     (input) INTEGER
	     The dimension of the symmetric tridiagonal	matrix.	 N >= 0.

     D	     (input/output) DOUBLE PRECISION array, dimension (N)
	     On	entry, the diagonal elements of	the tridiagonal	matrix.	 On
	     exit, if INFO = 0,	the eigenvalues	in ascending order.

     E	     (input/output) DOUBLE PRECISION array, dimension (N-1)
	     On	entry, the subdiagonal elements	of the tridiagonal matrix.  On
	     exit, E has been destroyed.




									Page 1






ZSTEDC(3F)							    ZSTEDC(3F)



     Z	     (input/output) COMPLEX*16 array, dimension	(LDZ,N)
	     On	entry, if COMPZ	= 'V', then Z contains the unitary matrix used
	     in	the reduction to tridiagonal form.  On exit, if	INFO = 0, then
	     if	COMPZ =	'V', Z contains	the orthonormal	eigenvectors of	the
	     original Hermitian	matrix,	and if COMPZ = 'I', Z contains the
	     orthonormal eigenvectors of the symmetric tridiagonal matrix.  If
	     COMPZ = 'N', then Z is not	referenced.

     LDZ     (input) INTEGER
	     The leading dimension of the array	Z.  LDZ	>= 1.  If eigenvectors
	     are desired, then LDZ >= max(1,N).

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if LWORK > 0, WORK(1) returns the	optimal	LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If COMPZ	= 'N' or 'I', or N <=
	     1,	LWORK must be at least 1.  If COMPZ = 'V' and N	> 1, LWORK
	     must be at	least N*N.

     RWORK   (workspace/output)	DOUBLE PRECISION array,
	     dimension (LRWORK)	On exit, if LRWORK > 0,	RWORK(1) returns the
	     optimal LRWORK.

     LRWORK  (input) INTEGER
	     The dimension of the array	RWORK.	If COMPZ = 'N' or N <= 1,
	     LRWORK must be at least 1.	 If COMPZ = 'V'	and N >	1, LRWORK must
	     be	at least 1 + 3*N + 2*N*lg N + 3*N**2 , where lg( N ) =
	     smallest integer k	such that 2**k >= N.  If COMPZ = 'I' and N >
	     1,	LRWORK must be at least	1 + 3*N	+ 2*N*lg N + 3*N**2 .

     IWORK   (workspace/output)	INTEGER	array, dimension (LIWORK)
	     On	exit, if LIWORK	> 0, IWORK(1) returns the optimal LIWORK.

     LIWORK  (input) INTEGER
	     The dimension of the array	IWORK.	If COMPZ = 'N' or N <= 1,
	     LIWORK must be at least 1.	 If COMPZ = 'V'	or N > 1,  LIWORK must
	     be	at least 6 + 6*N + 5*N*lg N.  If COMPZ = 'I' or	N > 1,	LIWORK
	     must be at	least 2	+ 5*N .

     INFO    (output) INTEGER
	     = 0:  successful exit.
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  The algorithm failed	to compute an eigenvalue while working
	     on	the submatrix lying in rows and	columns	INFO/(N+1) through
	     mod(INFO,N+1).
ZSTEDC(3F)							    ZSTEDC(3F)


NAME    [Toc]    [Back]

     ZSTEDC - compute all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the divide and conquer method

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZSTEDC(	COMPZ, N, D, E,	Z, LDZ,	WORK, LWORK, RWORK, LRWORK,
			IWORK, LIWORK, INFO )

	 CHARACTER	COMPZ

	 INTEGER	INFO, LDZ, LIWORK, LRWORK, LWORK, N

	 INTEGER	IWORK( * )

	 DOUBLE		PRECISION D( * ), E( * ), RWORK( * )

	 COMPLEX*16	WORK( *	), Z( LDZ, * )

PURPOSE    [Toc]    [Back]

     ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a
     symmetric tridiagonal matrix using	the divide and conquer method.	The
     eigenvectors of a full or band complex Hermitian matrix can also be found
     if	ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this	matrix to
     tridiagonal form.

     This code makes very mild assumptions about floating point	arithmetic. It
     will work on machines with	a guard	digit in add/subtract, or on those
     binary machines without guard digits which	subtract like the Cray X-MP,
     Cray Y-MP,	Cray C-90, or Cray-2.  It could	conceivably fail on
     hexadecimal or decimal machines without guard digits, but we know of
     none.  See	DLAED3 for details.

ARGUMENTS    [Toc]    [Back]

     COMPZ   (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only.
	     = 'I':  Compute eigenvectors of tridiagonal matrix	also.
	     = 'V':  Compute eigenvectors of original Hermitian	matrix also.
	     On	entry, Z contains the unitary matrix used to reduce the
	     original matrix to	tridiagonal form.

     N	     (input) INTEGER
	     The dimension of the symmetric tridiagonal	matrix.	 N >= 0.

     D	     (input/output) DOUBLE PRECISION array, dimension (N)
	     On	entry, the diagonal elements of	the tridiagonal	matrix.	 On
	     exit, if INFO = 0,	the eigenvalues	in ascending order.

     E	     (input/output) DOUBLE PRECISION array, dimension (N-1)
	     On	entry, the subdiagonal elements	of the tridiagonal matrix.  On
	     exit, E has been destroyed.




									Page 1






ZSTEDC(3F)							    ZSTEDC(3F)



     Z	     (input/output) COMPLEX*16 array, dimension	(LDZ,N)
	     On	entry, if COMPZ	= 'V', then Z contains the unitary matrix used
	     in	the reduction to tridiagonal form.  On exit, if	INFO = 0, then
	     if	COMPZ =	'V', Z contains	the orthonormal	eigenvectors of	the
	     original Hermitian	matrix,	and if COMPZ = 'I', Z contains the
	     orthonormal eigenvectors of the symmetric tridiagonal matrix.  If
	     COMPZ = 'N', then Z is not	referenced.

     LDZ     (input) INTEGER
	     The leading dimension of the array	Z.  LDZ	>= 1.  If eigenvectors
	     are desired, then LDZ >= max(1,N).

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if LWORK > 0, WORK(1) returns the	optimal	LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  If COMPZ	= 'N' or 'I', or N <=
	     1,	LWORK must be at least 1.  If COMPZ = 'V' and N	> 1, LWORK
	     must be at	least N*N.

     RWORK   (workspace/output)	DOUBLE PRECISION array,
	     dimension (LRWORK)	On exit, if LRWORK > 0,	RWORK(1) returns the
	     optimal LRWORK.

     LRWORK  (input) INTEGER
	     The dimension of the array	RWORK.	If COMPZ = 'N' or N <= 1,
	     LRWORK must be at least 1.	 If COMPZ = 'V'	and N >	1, LRWORK must
	     be	at least 1 + 3*N + 2*N*lg N + 3*N**2 , where lg( N ) =
	     smallest integer k	such that 2**k >= N.  If COMPZ = 'I' and N >
	     1,	LRWORK must be at least	1 + 3*N	+ 2*N*lg N + 3*N**2 .

     IWORK   (workspace/output)	INTEGER	array, dimension (LIWORK)
	     On	exit, if LIWORK	> 0, IWORK(1) returns the optimal LIWORK.

     LIWORK  (input) INTEGER
	     The dimension of the array	IWORK.	If COMPZ = 'N' or N <= 1,
	     LIWORK must be at least 1.	 If COMPZ = 'V'	or N > 1,  LIWORK must
	     be	at least 6 + 6*N + 5*N*lg N.  If COMPZ = 'I' or	N > 1,	LIWORK
	     must be at	least 2	+ 5*N .

     INFO    (output) INTEGER
	     = 0:  successful exit.
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  The algorithm failed	to compute an eigenvalue while working
	     on	the submatrix lying in rows and	columns	INFO/(N+1) through
	     mod(INFO,N+1).


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
slaed0 IRIX compute all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and
dlaed0 IRIX compute all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and
csteqr IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL
zsteqr IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL
dstev IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
dstevd IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
sstev IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
dsteqr IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL
ssteqr IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL
sstevd IRIX compute all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service