*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zlasr (3)              
Title
Content
Arch
Section
 

Contents


ZLASR(3F)							     ZLASR(3F)


NAME    [Toc]    [Back]

     ZLASR - perform the transformation	  A := P*A, when SIDE =	'L' or 'l' (
     Left-hand side )	A := A*P', when	SIDE = 'R' or 'r' ( Right-hand side )
     where A is	an m by	n complex matrix and P is an orthogonal	matrix,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLASR( SIDE, PIVOT, DIRECT, M, N, C, S,	A, LDA )

	 CHARACTER     DIRECT, PIVOT, SIDE

	 INTEGER       LDA, M, N

	 DOUBLE	       PRECISION C( * ), S( * )

	 COMPLEX*16    A( LDA, * )

PURPOSE    [Toc]    [Back]

     ZLASR   performs the transformation consisting of a sequence of plane
     rotations determined by the parameters PIVOT and DIRECT as	follows	( z =
     m when SIDE = 'L' or 'l' and z = n	when SIDE = 'R'	or 'r' ):

     When  DIRECT = 'F'	or 'f'	( Forward sequence ) then

	P = P( z - 1 )*...*P( 2	)*P( 1 ),

     and when DIRECT = 'B' or 'b'  ( Backward sequence ) then

	P = P( 1 )*P( 2	)*...*P( z - 1 ),

     where  P( k ) is a	plane rotation matrix for the following	planes:

	when  PIVOT = 'V' or 'v'  ( Variable pivot ),
	   the plane ( k, k + 1	)

	when  PIVOT = 'T' or 't'  ( Top	pivot ),
	   the plane ( 1, k + 1	)

	when  PIVOT = 'B' or 'b'  ( Bottom pivot ),
	   the plane ( k, z )

     c(	k ) and	s( k )	must contain the  cosine and sine that define the
     matrix  P(	k ).  The two by two plane rotation part of the	matrix P( k ),
     R(	k ), is	assumed	to be of the form

	R( k ) = (  c( k )  s( k ) ).
		 ( -s( k )  c( k ) )

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     Specifies whether the plane rotation matrix P is applied to A on
	     the left or the right.  = 'L':  Left, compute A :=	P*A



									Page 1






ZLASR(3F)							     ZLASR(3F)



	     = 'R':  Right, compute A:=	A*P'

     DIRECT  (input) CHARACTER*1
	     Specifies whether P is a forward or backward sequence of plane
	     rotations.	 = 'F':	 Forward, P = P( z - 1 )*...*P(	2 )*P( 1 )
	     = 'B':  Backward, P = P( 1	)*P( 2 )*...*P(	z - 1 )

     PIVOT   (input) CHARACTER*1
	     Specifies the plane for which P(k)	is a plane rotation matrix.  =
	     'V':  Variable pivot, the plane (k,k+1)
	     = 'T':  Top pivot,	the plane (1,k+1)
	     = 'B':  Bottom pivot, the plane (k,z)

     M	     (input) INTEGER
	     The number	of rows	of the matrix A.  If m <= 1, an	immediate
	     return is effected.

     N	     (input) INTEGER
	     The number	of columns of the matrix A.  If	n <= 1,	an immediate
	     return is effected.

	     C,	S    (input) DOUBLE PRECISION arrays, dimension	(M-1) if SIDE
	     = 'L' (N-1) if SIDE = 'R' c(k) and	s(k) contain the cosine	and
	     sine that define the matrix P(k).	The two	by two plane rotation
	     part of the matrix	P(k), R(k), is assumed to be of	the form R( k
	     ) = (  c( k )  s( k ) ).  ( -s( k )  c( k ) )

     A	     (input/output) COMPLEX*16 array, dimension	(LDA,N)
	     The m by n	matrix A.  On exit, A is overwritten by	P*A if SIDE =
	     'R' or by A*P' if SIDE = 'L'.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).
ZLASR(3F)							     ZLASR(3F)


NAME    [Toc]    [Back]

     ZLASR - perform the transformation	  A := P*A, when SIDE =	'L' or 'l' (
     Left-hand side )	A := A*P', when	SIDE = 'R' or 'r' ( Right-hand side )
     where A is	an m by	n complex matrix and P is an orthogonal	matrix,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLASR( SIDE, PIVOT, DIRECT, M, N, C, S,	A, LDA )

	 CHARACTER     DIRECT, PIVOT, SIDE

	 INTEGER       LDA, M, N

	 DOUBLE	       PRECISION C( * ), S( * )

	 COMPLEX*16    A( LDA, * )

PURPOSE    [Toc]    [Back]

     ZLASR   performs the transformation consisting of a sequence of plane
     rotations determined by the parameters PIVOT and DIRECT as	follows	( z =
     m when SIDE = 'L' or 'l' and z = n	when SIDE = 'R'	or 'r' ):

     When  DIRECT = 'F'	or 'f'	( Forward sequence ) then

	P = P( z - 1 )*...*P( 2	)*P( 1 ),

     and when DIRECT = 'B' or 'b'  ( Backward sequence ) then

	P = P( 1 )*P( 2	)*...*P( z - 1 ),

     where  P( k ) is a	plane rotation matrix for the following	planes:

	when  PIVOT = 'V' or 'v'  ( Variable pivot ),
	   the plane ( k, k + 1	)

	when  PIVOT = 'T' or 't'  ( Top	pivot ),
	   the plane ( 1, k + 1	)

	when  PIVOT = 'B' or 'b'  ( Bottom pivot ),
	   the plane ( k, z )

     c(	k ) and	s( k )	must contain the  cosine and sine that define the
     matrix  P(	k ).  The two by two plane rotation part of the	matrix P( k ),
     R(	k ), is	assumed	to be of the form

	R( k ) = (  c( k )  s( k ) ).
		 ( -s( k )  c( k ) )

ARGUMENTS    [Toc]    [Back]

     SIDE    (input) CHARACTER*1
	     Specifies whether the plane rotation matrix P is applied to A on
	     the left or the right.  = 'L':  Left, compute A :=	P*A



									Page 1






ZLASR(3F)							     ZLASR(3F)



	     = 'R':  Right, compute A:=	A*P'

     DIRECT  (input) CHARACTER*1
	     Specifies whether P is a forward or backward sequence of plane
	     rotations.	 = 'F':	 Forward, P = P( z - 1 )*...*P(	2 )*P( 1 )
	     = 'B':  Backward, P = P( 1	)*P( 2 )*...*P(	z - 1 )

     PIVOT   (input) CHARACTER*1
	     Specifies the plane for which P(k)	is a plane rotation matrix.  =
	     'V':  Variable pivot, the plane (k,k+1)
	     = 'T':  Top pivot,	the plane (1,k+1)
	     = 'B':  Bottom pivot, the plane (k,z)

     M	     (input) INTEGER
	     The number	of rows	of the matrix A.  If m <= 1, an	immediate
	     return is effected.

     N	     (input) INTEGER
	     The number	of columns of the matrix A.  If	n <= 1,	an immediate
	     return is effected.

	     C,	S    (input) DOUBLE PRECISION arrays, dimension	(M-1) if SIDE
	     = 'L' (N-1) if SIDE = 'R' c(k) and	s(k) contain the cosine	and
	     sine that define the matrix P(k).	The two	by two plane rotation
	     part of the matrix	P(k), R(k), is assumed to be of	the form R( k
	     ) = (  c( k )  s( k ) ).  ( -s( k )  c( k ) )

     A	     (input/output) COMPLEX*16 array, dimension	(LDA,N)
	     The m by n	matrix A.  On exit, A is overwritten by	P*A if SIDE =
	     'R' or by A*P' if SIDE = 'L'.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
dlasr IRIX where A is an m by n real matrix and P is an orthogonal matrix,
slasr IRIX where A is an m by n real matrix and P is an orthogonal matrix,
CGECO IRIX CGECO factors a complex matrix by Gaussian elimination and estimates the condition of the matrix. If RCOND is
HTRIDI IRIX EISPACK routine. This subroutine reduces a COMPLEX HERMITIAN matrix to a real symmetric tridiagonal matrix usi
CPOCO IRIX CPOCO factors a complex Hermitian positive definite matrix and estimates the condition of the matrix. If RCOND
CGBCO IRIX CGBCO factors a complex band matrix by Gaussian elimination and estimates the condition of the matrix. If RCON
slaexc IRIX upper quasi-triangular matrix T by an orthogonal similarity transformation
dlaexc IRIX upper quasi-triangular matrix T by an orthogonal similarity transformation
SSVDC IRIX SSVDC is a subroutine to reduce a real NxP matrix X by orthogonal transformations U and V to diagonal form. Th
DSVDC IRIX DSVDC is a subroutine to reduce a double precision NxP matrix X by orthogonal transformations U and V to diago
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service