ZLARTV(3F) ZLARTV(3F)
ZLARTV - applie a vector of complex plane rotations with real cosines to
elements of the complex vectors x and y
SUBROUTINE ZLARTV( N, X, INCX, Y, INCY, C, S, INCC )
INTEGER INCC, INCX, INCY, N
DOUBLE PRECISION C( * )
COMPLEX*16 S( * ), X( * ), Y( * )
ZLARTV applies a vector of complex plane rotations with real cosines to
elements of the complex vectors x and y. For i = 1,2,...,n
( x(i) ) := ( c(i) s(i) ) ( x(i) )
( y(i) ) ( -conjg(s(i)) c(i) ) ( y(i) )
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector x.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY)
The vector y.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
ZLARTV(3F) ZLARTV(3F)
ZLARTV - applie a vector of complex plane rotations with real cosines to
elements of the complex vectors x and y
SUBROUTINE ZLARTV( N, X, INCX, Y, INCY, C, S, INCC )
INTEGER INCC, INCX, INCY, N
DOUBLE PRECISION C( * )
COMPLEX*16 S( * ), X( * ), Y( * )
ZLARTV applies a vector of complex plane rotations with real cosines to
elements of the complex vectors x and y. For i = 1,2,...,n
( x(i) ) := ( c(i) s(i) ) ( x(i) )
( y(i) ) ( -conjg(s(i)) c(i) ) ( y(i) )
N (input) INTEGER
The number of plane rotations to be applied.
X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector x.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY)
The vector y.
INCY (input) INTEGER
The increment between elements of Y. INCY > 0.
C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
INCC (input) INTEGER
The increment between elements of C and S. INCC > 0.
PPPPaaaaggggeeee 1111 [ Back ]
|