*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zlanht (3)              
Title
Content
Arch
Section
 

Contents


ZLANHT(3F)							    ZLANHT(3F)


NAME    [Toc]    [Back]

     ZLANHT - return the value of the one norm,	or the Frobenius norm, or the
     infinity norm, or the element of largest absolute value of	a complex
     Hermitian tridiagonal matrix A

SYNOPSIS    [Toc]    [Back]

     DOUBLE PRECISION FUNCTION ZLANHT( NORM, N,	D, E )

	 CHARACTER    NORM

	 INTEGER      N

	 DOUBLE	      PRECISION	D( * )

	 COMPLEX*16   E( * )

PURPOSE    [Toc]    [Back]

     ZLANHT  returns the value of the one norm,	 or the	Frobenius norm,	or the
     infinity norm,  or	the  element of	 largest absolute value	 of a complex
     Hermitian tridiagonal matrix A.

DESCRIPTION    [Toc]    [Back]

     ZLANHT returns the	value

	ZLANHT = ( max(abs(A(i,j))), NORM = 'M'	or 'm'
		 (
		 ( norm1(A),	     NORM = '1', 'O' or	'o'
		 (
		 ( normI(A),	     NORM = 'I'	or 'i'
		 (
		 ( normF(A),	     NORM = 'F', 'f', 'E' or 'e'

     where  norm1  denotes the	one norm of a matrix (maximum column sum),
     normI  denotes the	 infinity norm	of a matrix  (maximum row sum) and
     normF  denotes the	 Frobenius norm	of a matrix (square root of sum	of
     squares).	Note that  max(abs(A(i,j)))  is	not a  matrix norm.

ARGUMENTS    [Toc]    [Back]

     NORM    (input) CHARACTER*1
	     Specifies the value to be returned	in ZLANHT as described above.

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.  When N = 0, ZLANHT is	set to
	     zero.

     D	     (input) DOUBLE PRECISION array, dimension (N)
	     The diagonal elements of A.






									Page 1






ZLANHT(3F)							    ZLANHT(3F)



     E	     (input) COMPLEX*16	array, dimension (N-1)
	     The (n-1) sub-diagonal or super-diagonal elements of A.
ZLANHT(3F)							    ZLANHT(3F)


NAME    [Toc]    [Back]

     ZLANHT - return the value of the one norm,	or the Frobenius norm, or the
     infinity norm, or the element of largest absolute value of	a complex
     Hermitian tridiagonal matrix A

SYNOPSIS    [Toc]    [Back]

     DOUBLE PRECISION FUNCTION ZLANHT( NORM, N,	D, E )

	 CHARACTER    NORM

	 INTEGER      N

	 DOUBLE	      PRECISION	D( * )

	 COMPLEX*16   E( * )

PURPOSE    [Toc]    [Back]

     ZLANHT  returns the value of the one norm,	 or the	Frobenius norm,	or the
     infinity norm,  or	the  element of	 largest absolute value	 of a complex
     Hermitian tridiagonal matrix A.

DESCRIPTION    [Toc]    [Back]

     ZLANHT returns the	value

	ZLANHT = ( max(abs(A(i,j))), NORM = 'M'	or 'm'
		 (
		 ( norm1(A),	     NORM = '1', 'O' or	'o'
		 (
		 ( normI(A),	     NORM = 'I'	or 'i'
		 (
		 ( normF(A),	     NORM = 'F', 'f', 'E' or 'e'

     where  norm1  denotes the	one norm of a matrix (maximum column sum),
     normI  denotes the	 infinity norm	of a matrix  (maximum row sum) and
     normF  denotes the	 Frobenius norm	of a matrix (square root of sum	of
     squares).	Note that  max(abs(A(i,j)))  is	not a  matrix norm.

ARGUMENTS    [Toc]    [Back]

     NORM    (input) CHARACTER*1
	     Specifies the value to be returned	in ZLANHT as described above.

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.  When N = 0, ZLANHT is	set to
	     zero.

     D	     (input) DOUBLE PRECISION array, dimension (N)
	     The diagonal elements of A.






									Page 1






ZLANHT(3F)							    ZLANHT(3F)



     E	     (input) COMPLEX*16	array, dimension (N-1)
	     The (n-1) sub-diagonal or super-diagonal elements of A.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
zgecon IRIX complex matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by ZGETRF
sgecon IRIX real matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by SGETRF
dgecon IRIX real matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by DGETRF
cgecon IRIX complex matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by CGETRF
dgbcon IRIX general band matrix A, in either the 1-norm or the infinity-norm,
cgbcon IRIX general band matrix A, in either the 1-norm or the infinity-norm,
zgbcon IRIX general band matrix A, in either the 1-norm or the infinity-norm,
sgbcon IRIX general band matrix A, in either the 1-norm or the infinity-norm,
ztbcon IRIX band matrix A, in either the 1-norm or the infinity-norm
ztpcon IRIX triangular matrix A, in either the 1-norm or the infinity-norm
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service