*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zlags2 (3)              
Title
Content
Arch
Section
 

Contents


ZLAGS2(3F)							    ZLAGS2(3F)


NAME    [Toc]    [Back]

     ZLAGS2 - compute 2-by-2 unitary matrices U, V and Q, such that if ( UPPER
     ) then   U'*A*Q = U'*( A1 A2 )*Q =	( x 0 )	 ( 0 A3	) ( x x	) and  V'*B*Q
     = V'*( B1 B2 )*Q =	( x 0 )	 ( 0 B3	) ( x x	)  or if ( .NOT.UPPER )	then
     U'*A*Q = U'*( A1 0	)*Q = (	x x )  ( A2 A3 ) ( 0 x ) and  V'*B*Q = V'*( B1
     0 )*Q = ( x x )  (	B2 B3 )	( 0 x )	where	U = ( CSU SNU ), V = ( CSV SNV
     ),

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLAGS2(	UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
			CSQ, SNQ )

	 LOGICAL	UPPER

	 DOUBLE		PRECISION A1, A3, B1, B3, CSQ, CSU, CSV

	 COMPLEX*16	A2, B2,	SNQ, SNU, SNV

PURPOSE    [Toc]    [Back]

     ZLAGS2 computes 2-by-2 unitary matrices U,	V and Q, such that if (	UPPER
     ) then
	   ( -CONJG(SNU)  CSU )	     ( -CONJG(SNV) CSV )

       Q = (	 CSQ	  SNQ )
	   ( -CONJG(SNQ)  CSQ )

     Z'	denotes	the conjugate transpose	of Z.

     The rows of the transformed A and B are parallel. Moreover, if the	input
     2-by-2 matrix A is	not zero, then the transformed (1,1) entry of A	is not
     zero. If the input	matrices A and B are both not zero, then the
     transformed (2,2) element of B is not zero, except	when the first rows of
     input A and B are parallel	and the	second rows are	zero.

ARGUMENTS    [Toc]    [Back]

     UPPER   (input) LOGICAL
	     = .TRUE.: the input matrices A and	B are upper triangular.
	     = .FALSE.:	the input matrices A and B are lower triangular.

     A1	     (input) DOUBLE PRECISION
	     A2	     (input) COMPLEX*16	A3	(input)	DOUBLE PRECISION On
	     entry, A1,	A2 and A3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix A.

     B1	     (input) DOUBLE PRECISION
	     B2	     (input) COMPLEX*16	B3	(input)	DOUBLE PRECISION On
	     entry, B1,	B2 and B3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix B.






									Page 1






ZLAGS2(3F)							    ZLAGS2(3F)



     CSU     (output) DOUBLE PRECISION
	     SNU     (output) COMPLEX*16 The desired unitary matrix U.

     CSV     (output) DOUBLE PRECISION
	     SNV     (output) COMPLEX*16 The desired unitary matrix V.

     CSQ     (output) DOUBLE PRECISION
	     SNQ     (output) COMPLEX*16 The desired unitary matrix Q.
ZLAGS2(3F)							    ZLAGS2(3F)


NAME    [Toc]    [Back]

     ZLAGS2 - compute 2-by-2 unitary matrices U, V and Q, such that if ( UPPER
     ) then   U'*A*Q = U'*( A1 A2 )*Q =	( x 0 )	 ( 0 A3	) ( x x	) and  V'*B*Q
     = V'*( B1 B2 )*Q =	( x 0 )	 ( 0 B3	) ( x x	)  or if ( .NOT.UPPER )	then
     U'*A*Q = U'*( A1 0	)*Q = (	x x )  ( A2 A3 ) ( 0 x ) and  V'*B*Q = V'*( B1
     0 )*Q = ( x x )  (	B2 B3 )	( 0 x )	where	U = ( CSU SNU ), V = ( CSV SNV
     ),

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLAGS2(	UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
			CSQ, SNQ )

	 LOGICAL	UPPER

	 DOUBLE		PRECISION A1, A3, B1, B3, CSQ, CSU, CSV

	 COMPLEX*16	A2, B2,	SNQ, SNU, SNV

PURPOSE    [Toc]    [Back]

     ZLAGS2 computes 2-by-2 unitary matrices U,	V and Q, such that if (	UPPER
     ) then
	   ( -CONJG(SNU)  CSU )	     ( -CONJG(SNV) CSV )

       Q = (	 CSQ	  SNQ )
	   ( -CONJG(SNQ)  CSQ )

     Z'	denotes	the conjugate transpose	of Z.

     The rows of the transformed A and B are parallel. Moreover, if the	input
     2-by-2 matrix A is	not zero, then the transformed (1,1) entry of A	is not
     zero. If the input	matrices A and B are both not zero, then the
     transformed (2,2) element of B is not zero, except	when the first rows of
     input A and B are parallel	and the	second rows are	zero.

ARGUMENTS    [Toc]    [Back]

     UPPER   (input) LOGICAL
	     = .TRUE.: the input matrices A and	B are upper triangular.
	     = .FALSE.:	the input matrices A and B are lower triangular.

     A1	     (input) DOUBLE PRECISION
	     A2	     (input) COMPLEX*16	A3	(input)	DOUBLE PRECISION On
	     entry, A1,	A2 and A3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix A.

     B1	     (input) DOUBLE PRECISION
	     B2	     (input) COMPLEX*16	B3	(input)	DOUBLE PRECISION On
	     entry, B1,	B2 and B3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix B.






									Page 1






ZLAGS2(3F)							    ZLAGS2(3F)



     CSU     (output) DOUBLE PRECISION
	     SNU     (output) COMPLEX*16 The desired unitary matrix U.

     CSV     (output) DOUBLE PRECISION
	     SNV     (output) COMPLEX*16 The desired unitary matrix V.

     CSQ     (output) DOUBLE PRECISION
	     SNQ     (output) COMPLEX*16 The desired unitary matrix Q.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
zgghrd IRIX reduce a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary transformations, wh
cgghrd IRIX reduce a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary transformations, wh
slags2 IRIX compute 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) (
dlags2 IRIX compute 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) (
shseqr IRIX compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Sch
chseqr IRIX compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z from the
dhseqr IRIX compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Sch
zhseqr IRIX compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z from the
ctzrqf IRIX reduce the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary tra
ztzrqf IRIX reduce the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary tra
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service