*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zlaein (3)              
Title
Content
Arch
Section
 

Contents


ZLAEIN(3F)							    ZLAEIN(3F)


NAME    [Toc]    [Back]

     ZLAEIN - use inverse iteration to find a right or left eigenvector
     corresponding to the eigenvalue W of a complex upper Hessenberg matrix H

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLAEIN(	RIGHTV,	NOINIT,	N, H, LDH, W, V, B, LDB, RWORK,	EPS3,
			SMLNUM,	INFO )

	 LOGICAL	NOINIT,	RIGHTV

	 INTEGER	INFO, LDB, LDH,	N

	 DOUBLE		PRECISION EPS3,	SMLNUM

	 COMPLEX*16	W

	 DOUBLE		PRECISION RWORK( * )

	 COMPLEX*16	B( LDB,	* ), H(	LDH, * ), V( * )

PURPOSE    [Toc]    [Back]

     ZLAEIN uses inverse iteration to find a right or left eigenvector
     corresponding to the eigenvalue W of a complex upper Hessenberg matrix H.

ARGUMENTS    [Toc]    [Back]

     RIGHTV   (input) LOGICAL
	      =	.TRUE. : compute right eigenvector;
	      =	.FALSE.: compute left eigenvector.

     NOINIT   (input) LOGICAL
	      =	.TRUE. : no initial vector supplied in V
	      =	.FALSE.: initial vector	supplied in V.

     N	     (input) INTEGER
	     The order of the matrix H.	 N >= 0.

     H	     (input) COMPLEX*16	array, dimension (LDH,N)
	     The upper Hessenberg matrix H.

     LDH     (input) INTEGER
	     The leading dimension of the array	H.  LDH	>= max(1,N).

     W	     (input) COMPLEX*16
	     The eigenvalue of H whose corresponding right or left eigenvector
	     is	to be computed.

     V	     (input/output) COMPLEX*16 array, dimension	(N)
	     On	entry, if NOINIT = .FALSE., V must contain a starting vector
	     for inverse iteration; otherwise V	need not be set.  On exit, V
	     contains the computed eigenvector,	normalized so that the
	     component of largest magnitude has	magnitude 1; here the



									Page 1






ZLAEIN(3F)							    ZLAEIN(3F)



	     magnitude of a complex number (x,y) is taken to be	|x| + |y|.

     B	     (workspace) COMPLEX*16 array, dimension (LDB,N)

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (N)

     EPS3    (input) DOUBLE PRECISION
	     A small machine-dependent value which is used to perturb close
	     eigenvalues, and to replace zero pivots.

     SMLNUM  (input) DOUBLE PRECISION
	     A machine-dependent value close to	the underflow threshold.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     = 1:  inverse iteration did not converge; V is set	to the last
	     iterate.
ZLAEIN(3F)							    ZLAEIN(3F)


NAME    [Toc]    [Back]

     ZLAEIN - use inverse iteration to find a right or left eigenvector
     corresponding to the eigenvalue W of a complex upper Hessenberg matrix H

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLAEIN(	RIGHTV,	NOINIT,	N, H, LDH, W, V, B, LDB, RWORK,	EPS3,
			SMLNUM,	INFO )

	 LOGICAL	NOINIT,	RIGHTV

	 INTEGER	INFO, LDB, LDH,	N

	 DOUBLE		PRECISION EPS3,	SMLNUM

	 COMPLEX*16	W

	 DOUBLE		PRECISION RWORK( * )

	 COMPLEX*16	B( LDB,	* ), H(	LDH, * ), V( * )

PURPOSE    [Toc]    [Back]

     ZLAEIN uses inverse iteration to find a right or left eigenvector
     corresponding to the eigenvalue W of a complex upper Hessenberg matrix H.

ARGUMENTS    [Toc]    [Back]

     RIGHTV   (input) LOGICAL
	      =	.TRUE. : compute right eigenvector;
	      =	.FALSE.: compute left eigenvector.

     NOINIT   (input) LOGICAL
	      =	.TRUE. : no initial vector supplied in V
	      =	.FALSE.: initial vector	supplied in V.

     N	     (input) INTEGER
	     The order of the matrix H.	 N >= 0.

     H	     (input) COMPLEX*16	array, dimension (LDH,N)
	     The upper Hessenberg matrix H.

     LDH     (input) INTEGER
	     The leading dimension of the array	H.  LDH	>= max(1,N).

     W	     (input) COMPLEX*16
	     The eigenvalue of H whose corresponding right or left eigenvector
	     is	to be computed.

     V	     (input/output) COMPLEX*16 array, dimension	(N)
	     On	entry, if NOINIT = .FALSE., V must contain a starting vector
	     for inverse iteration; otherwise V	need not be set.  On exit, V
	     contains the computed eigenvector,	normalized so that the
	     component of largest magnitude has	magnitude 1; here the



									Page 1






ZLAEIN(3F)							    ZLAEIN(3F)



	     magnitude of a complex number (x,y) is taken to be	|x| + |y|.

     B	     (workspace) COMPLEX*16 array, dimension (LDB,N)

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (N)

     EPS3    (input) DOUBLE PRECISION
	     A small machine-dependent value which is used to perturb close
	     eigenvalues, and to replace zero pivots.

     SMLNUM  (input) DOUBLE PRECISION
	     A machine-dependent value close to	the underflow threshold.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     = 1:  inverse iteration did not converge; V is set	to the last
	     iterate.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
slaein IRIX use inverse iteration to find a right or left eigenvector corresponding to the eigenvalue (WR,WI) of a real up
dlaein IRIX use inverse iteration to find a right or left eigenvector corresponding to the eigenvalue (WR,WI) of a real up
zhsein IRIX use inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg matrix H
chsein IRIX use inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg matrix H
dhsein IRIX use inverse iteration to find specified right and/or left eigenvectors of a real upper Hessenberg matrix H
shsein IRIX use inverse iteration to find specified right and/or left eigenvectors of a real upper Hessenberg matrix H
cggbak IRIX form the right or left eigenvectors of a complex generalized eigenvalue problem A*x = lambda*B*x, by backward
zggbak IRIX form the right or left eigenvectors of a complex generalized eigenvalue problem A*x = lambda*B*x, by backward
ztrevc IRIX compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T
ctrevc IRIX compute some or all of the right and/or left eigenvectors of a complex upper triangular matrix T
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service