*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zlaed0 (3)              
Title
Content
Arch
Section
 

Contents


ZLAED0(3F)							    ZLAED0(3F)


NAME    [Toc]    [Back]

     ZLAED0 - the divide and conquer method, ZLAED0 computes all eigenvalues
     of	a symmetric tridiagonal	matrix which is	one diagonal block of those
     from reducing a dense or band Hermitian matrix and	corresponding
     eigenvectors of the dense or band matrix

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLAED0(	QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK,
			INFO )

	 INTEGER	INFO, LDQ, LDQS, N, QSIZ

	 INTEGER	IWORK( * )

	 DOUBLE		PRECISION D( * ), E( * ), RWORK( * )

	 COMPLEX*16	Q( LDQ,	* ), QSTORE( LDQS, * )

PURPOSE    [Toc]    [Back]

     Using the divide and conquer method, ZLAED0 computes all eigenvalues of a
     symmetric tridiagonal matrix which	is one diagonal	block of those from
     reducing a	dense or band Hermitian	matrix and corresponding eigenvectors
     of	the dense or band matrix.

ARGUMENTS    [Toc]    [Back]

     QSIZ   (input) INTEGER
	    The	dimension of the unitary matrix	used to	reduce the full	matrix
	    to tridiagonal form.  QSIZ >= N if ICOMPQ =	1.

     N	    (input) INTEGER
	    The	dimension of the symmetric tridiagonal matrix.	N >= 0.

     D	    (input/output) DOUBLE PRECISION array, dimension (N)
	    On entry, the diagonal elements of the tridiagonal matrix.	On
	    exit, the eigenvalues in ascending order.

     E	    (input/output) DOUBLE PRECISION array, dimension (N-1)
	    On entry, the off-diagonal elements	of the tridiagonal matrix.  On
	    exit, E has	been destroyed.

     Q	    (input/output) COMPLEX*16 array, dimension (LDQ,N)
	    On entry, Q	must contain an	QSIZ x N matrix	whose columns
	    unitarily orthonormal. It is a part	of the unitary matrix that
	    reduces the	full dense Hermitian matrix to a (reducible) symmetric
	    tridiagonal	matrix.

     LDQ    (input) INTEGER
	    The	leading	dimension of the array Q.  LDQ >= max(1,N).






									Page 1






ZLAED0(3F)							    ZLAED0(3F)



     IWORK  (workspace)	INTEGER	array,
	    the	dimension of IWORK must	be at least 6 +	6*N + 5*N*lg N ( lg( N
	    ) =	smallest integer k such	that 2^k >= N )

     RWORK  (workspace)	DOUBLE PRECISION array,
	    dimension (1 + 3*N + 2*N*lg	N + 3*N**2) ( lg( N ) =	smallest
	    integer k such that	2^k >= N )

	    QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) Used to
	    store parts	of the eigenvector matrix when the updating matrix
	    multiplies take place.

     LDQS   (input) INTEGER
	    The	leading	dimension of the array QSTORE.	LDQS >=	max(1,N).

     INFO   (output) INTEGER
	    = 0:  successful exit.
	    < 0:  if INFO = -i,	the i-th argument had an illegal value.
	    > 0:  The algorithm	failed to compute an eigenvalue	while working
	    on the submatrix lying in rows and columns INFO/(N+1) through
	    mod(INFO,N+1).
ZLAED0(3F)							    ZLAED0(3F)


NAME    [Toc]    [Back]

     ZLAED0 - the divide and conquer method, ZLAED0 computes all eigenvalues
     of	a symmetric tridiagonal	matrix which is	one diagonal block of those
     from reducing a dense or band Hermitian matrix and	corresponding
     eigenvectors of the dense or band matrix

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZLAED0(	QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK,
			INFO )

	 INTEGER	INFO, LDQ, LDQS, N, QSIZ

	 INTEGER	IWORK( * )

	 DOUBLE		PRECISION D( * ), E( * ), RWORK( * )

	 COMPLEX*16	Q( LDQ,	* ), QSTORE( LDQS, * )

PURPOSE    [Toc]    [Back]

     Using the divide and conquer method, ZLAED0 computes all eigenvalues of a
     symmetric tridiagonal matrix which	is one diagonal	block of those from
     reducing a	dense or band Hermitian	matrix and corresponding eigenvectors
     of	the dense or band matrix.

ARGUMENTS    [Toc]    [Back]

     QSIZ   (input) INTEGER
	    The	dimension of the unitary matrix	used to	reduce the full	matrix
	    to tridiagonal form.  QSIZ >= N if ICOMPQ =	1.

     N	    (input) INTEGER
	    The	dimension of the symmetric tridiagonal matrix.	N >= 0.

     D	    (input/output) DOUBLE PRECISION array, dimension (N)
	    On entry, the diagonal elements of the tridiagonal matrix.	On
	    exit, the eigenvalues in ascending order.

     E	    (input/output) DOUBLE PRECISION array, dimension (N-1)
	    On entry, the off-diagonal elements	of the tridiagonal matrix.  On
	    exit, E has	been destroyed.

     Q	    (input/output) COMPLEX*16 array, dimension (LDQ,N)
	    On entry, Q	must contain an	QSIZ x N matrix	whose columns
	    unitarily orthonormal. It is a part	of the unitary matrix that
	    reduces the	full dense Hermitian matrix to a (reducible) symmetric
	    tridiagonal	matrix.

     LDQ    (input) INTEGER
	    The	leading	dimension of the array Q.  LDQ >= max(1,N).






									Page 1






ZLAED0(3F)							    ZLAED0(3F)



     IWORK  (workspace)	INTEGER	array,
	    the	dimension of IWORK must	be at least 6 +	6*N + 5*N*lg N ( lg( N
	    ) =	smallest integer k such	that 2^k >= N )

     RWORK  (workspace)	DOUBLE PRECISION array,
	    dimension (1 + 3*N + 2*N*lg	N + 3*N**2) ( lg( N ) =	smallest
	    integer k such that	2^k >= N )

	    QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) Used to
	    store parts	of the eigenvector matrix when the updating matrix
	    multiplies take place.

     LDQS   (input) INTEGER
	    The	leading	dimension of the array QSTORE.	LDQS >=	max(1,N).

     INFO   (output) INTEGER
	    = 0:  successful exit.
	    < 0:  if INFO = -i,	the i-th argument had an illegal value.
	    > 0:  The algorithm	failed to compute an eigenvalue	while working
	    on the submatrix lying in rows and columns INFO/(N+1) through
	    mod(INFO,N+1).


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
claed0 IRIX the divide and conquer method, CLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one
dlaed0 IRIX compute all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and
slaed0 IRIX compute all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and
sstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
zstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
dstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
cstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
TQL1 IRIX EISPACK routine. This subroutine finds the eigenvalues of a SYMMETRIC TRIDIAGONAL matrix by the QL method.
dstebz IRIX compute the eigenvalues of a symmetric tridiagonal matrix T
sstebz IRIX compute the eigenvalues of a symmetric tridiagonal matrix T
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service