ZHPSV(3F) ZHPSV(3F)
ZHPSV - compute the solution to a complex system of linear equations A *
X = B,
SUBROUTINE ZHPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
CHARACTER UPLO
INTEGER INFO, LDB, N, NRHS
INTEGER IPIV( * )
COMPLEX*16 AP( * ), B( LDB, * )
ZHPSV computes the solution to a complex system of linear equations
A * X = B, where A is an N-by-N Hermitian matrix stored in packed
format and X and B are N-by-NRHS matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**H, if UPLO = 'U', or
A = L * D * L**H, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is Hermitian and block diagonal with 1-by-1 and
2-by-2 diagonal blocks. The factored form of A is then used to solve the
system of equations A * X = B.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the matrix A.
N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of
the matrix B. NRHS >= 0.
AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix A,
packed columnwise in a linear array. The j-th column of A is
stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2)
= A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2nj)/2)
= A(i,j) for j<=i<=n. See below for further details.
On exit, the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A = U*D*U**H or A
= L*D*L**H as computed by ZHPTRF, stored as a packed triangular
Page 1
ZHPSV(3F) ZHPSV(3F)
matrix in the same storage format as A.
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by ZHPTRF. If IPIV(k) > 0, then rows and columns k
and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal
block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is
a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) <
0, then rows and columns k+1 and -IPIV(k) were interchanged and
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B. On exit, if
INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly
singular, so the solution could not be computed.
FURTHER DETAILS
The packed storage scheme is illustrated by the following example when N
= 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
ZHPSV(3F) ZHPSV(3F)
ZHPSV - compute the solution to a complex system of linear equations A *
X = B,
SUBROUTINE ZHPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
CHARACTER UPLO
INTEGER INFO, LDB, N, NRHS
INTEGER IPIV( * )
COMPLEX*16 AP( * ), B( LDB, * )
ZHPSV computes the solution to a complex system of linear equations
A * X = B, where A is an N-by-N Hermitian matrix stored in packed
format and X and B are N-by-NRHS matrices.
The diagonal pivoting method is used to factor A as
A = U * D * U**H, if UPLO = 'U', or
A = L * D * L**H, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is Hermitian and block diagonal with 1-by-1 and
2-by-2 diagonal blocks. The factored form of A is then used to solve the
system of equations A * X = B.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The number of linear equations, i.e., the order of the matrix A.
N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of
the matrix B. NRHS >= 0.
AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix A,
packed columnwise in a linear array. The j-th column of A is
stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2)
= A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2nj)/2)
= A(i,j) for j<=i<=n. See below for further details.
On exit, the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A = U*D*U**H or A
= L*D*L**H as computed by ZHPTRF, stored as a packed triangular
Page 1
ZHPSV(3F) ZHPSV(3F)
matrix in the same storage format as A.
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by ZHPTRF. If IPIV(k) > 0, then rows and columns k
and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal
block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is
a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) <
0, then rows and columns k+1 and -IPIV(k) were interchanged and
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B. On exit, if
INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly
singular, so the solution could not be computed.
FURTHER DETAILS
The packed storage scheme is illustrated by the following example when N
= 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
PPPPaaaaggggeeee 2222 [ Back ]
|