*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zhegv (3)              
Title
Content
Arch
Section
 

Contents


ZHEGV(3F)							     ZHEGV(3F)


NAME    [Toc]    [Back]

     ZHEGV - compute all the eigenvalues, and optionally, the eigenvectors of
     a complex generalized Hermitian-definite eigenproblem, of the form
     A*x=(lambda)*B*x, A*Bx=(lambda)*x,	or B*A*x=(lambda)*x

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZHEGV( ITYPE, JOBZ, UPLO, N, A,	LDA, B,	LDB, W,	WORK, LWORK,
		       RWORK, INFO )

	 CHARACTER     JOBZ, UPLO

	 INTEGER       INFO, ITYPE, LDA, LDB, LWORK, N

	 DOUBLE	       PRECISION RWORK(	* ), W(	* )

	 COMPLEX*16    A( LDA, * ), B( LDB, * ), WORK( * )

PURPOSE    [Toc]    [Back]

     ZHEGV computes all	the eigenvalues, and optionally, the eigenvectors of a
     complex generalized Hermitian-definite eigenproblem, of the form
     A*x=(lambda)*B*x,	A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.	Here A and B
     are assumed to be Hermitian and B is also
     positive definite.

ARGUMENTS    [Toc]    [Back]

     ITYPE   (input) INTEGER
	     Specifies the problem type	to be solved:
	     = 1:  A*x = (lambda)*B*x
	     = 2:  A*B*x = (lambda)*x
	     = 3:  B*A*x = (lambda)*x

     JOBZ    (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only;
	     = 'V':  Compute eigenvalues and eigenvectors.

     UPLO    (input) CHARACTER*1
	     = 'U':  Upper triangles of	A and B	are stored;
	     = 'L':  Lower triangles of	A and B	are stored.

     N	     (input) INTEGER
	     The order of the matrices A and B.	 N >= 0.

     A	     (input/output) COMPLEX*16 array, dimension	(LDA, N)
	     On	entry, the Hermitian matrix A.	If UPLO	= 'U', the leading Nby-N
 upper	triangular part	of A contains the upper	triangular
	     part of the matrix	A.  If UPLO = 'L', the leading N-by-N lower
	     triangular	part of	A contains the lower triangular	part of	the
	     matrix A.

	     On	exit, if JOBZ =	'V', then if INFO = 0, A contains the matrix Z
	     of	eigenvectors.  The eigenvectors	are normalized as follows:  if



									Page 1






ZHEGV(3F)							     ZHEGV(3F)



	     ITYPE = 1 or 2, Z**H*B*Z =	I; if ITYPE = 3, Z**H*inv(B)*Z = I.
	     If	JOBZ = 'N', then on exit the upper triangle (if	UPLO='U') or
	     the lower triangle	(if UPLO='L') of A, including the diagonal, is
	     destroyed.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     B	     (input/output) COMPLEX*16 array, dimension	(LDB, N)
	     On	entry, the Hermitian matrix B.	If UPLO	= 'U', the leading Nby-N
 upper	triangular part	of B contains the upper	triangular
	     part of the matrix	B.  If UPLO = 'L', the leading N-by-N lower
	     triangular	part of	B contains the lower triangular	part of	the
	     matrix B.

	     On	exit, if INFO <= N, the	part of	B containing the matrix	is
	     overwritten by the	triangular factor U or L from the Cholesky
	     factorization B = U**H*U or B = L*L**H.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     W	     (output) DOUBLE PRECISION array, dimension	(N)
	     If	INFO = 0, the eigenvalues in ascending order.

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The length	of the array WORK.  LWORK >= max(1,2*N-1).  For
	     optimal efficiency, LWORK >= (NB+1)*N, where NB is	the blocksize
	     for ZHETRD	returned by ILAENV.

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (max(1, 3*N-2))

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
	     > 0:  ZPOTRF or ZHEEV returned an error code:
	     <=	N:  if INFO = i, ZHEEV failed to converge; i off-diagonal
	     elements of an intermediate tridiagonal form did not converge to
	     zero; > N:	  if INFO = N +	i, for 1 <= i <= N, then the leading
	     minor of order i of B is not positive definite.  The
	     factorization of B	could not be completed and no eigenvalues or
	     eigenvectors were computed.
ZHEGV(3F)							     ZHEGV(3F)


NAME    [Toc]    [Back]

     ZHEGV - compute all the eigenvalues, and optionally, the eigenvectors of
     a complex generalized Hermitian-definite eigenproblem, of the form
     A*x=(lambda)*B*x, A*Bx=(lambda)*x,	or B*A*x=(lambda)*x

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZHEGV( ITYPE, JOBZ, UPLO, N, A,	LDA, B,	LDB, W,	WORK, LWORK,
		       RWORK, INFO )

	 CHARACTER     JOBZ, UPLO

	 INTEGER       INFO, ITYPE, LDA, LDB, LWORK, N

	 DOUBLE	       PRECISION RWORK(	* ), W(	* )

	 COMPLEX*16    A( LDA, * ), B( LDB, * ), WORK( * )

PURPOSE    [Toc]    [Back]

     ZHEGV computes all	the eigenvalues, and optionally, the eigenvectors of a
     complex generalized Hermitian-definite eigenproblem, of the form
     A*x=(lambda)*B*x,	A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.	Here A and B
     are assumed to be Hermitian and B is also
     positive definite.

ARGUMENTS    [Toc]    [Back]

     ITYPE   (input) INTEGER
	     Specifies the problem type	to be solved:
	     = 1:  A*x = (lambda)*B*x
	     = 2:  A*B*x = (lambda)*x
	     = 3:  B*A*x = (lambda)*x

     JOBZ    (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only;
	     = 'V':  Compute eigenvalues and eigenvectors.

     UPLO    (input) CHARACTER*1
	     = 'U':  Upper triangles of	A and B	are stored;
	     = 'L':  Lower triangles of	A and B	are stored.

     N	     (input) INTEGER
	     The order of the matrices A and B.	 N >= 0.

     A	     (input/output) COMPLEX*16 array, dimension	(LDA, N)
	     On	entry, the Hermitian matrix A.	If UPLO	= 'U', the leading Nby-N
 upper	triangular part	of A contains the upper	triangular
	     part of the matrix	A.  If UPLO = 'L', the leading N-by-N lower
	     triangular	part of	A contains the lower triangular	part of	the
	     matrix A.

	     On	exit, if JOBZ =	'V', then if INFO = 0, A contains the matrix Z
	     of	eigenvectors.  The eigenvectors	are normalized as follows:  if



									Page 1






ZHEGV(3F)							     ZHEGV(3F)



	     ITYPE = 1 or 2, Z**H*B*Z =	I; if ITYPE = 3, Z**H*inv(B)*Z = I.
	     If	JOBZ = 'N', then on exit the upper triangle (if	UPLO='U') or
	     the lower triangle	(if UPLO='L') of A, including the diagonal, is
	     destroyed.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     B	     (input/output) COMPLEX*16 array, dimension	(LDB, N)
	     On	entry, the Hermitian matrix B.	If UPLO	= 'U', the leading Nby-N
 upper	triangular part	of B contains the upper	triangular
	     part of the matrix	B.  If UPLO = 'L', the leading N-by-N lower
	     triangular	part of	B contains the lower triangular	part of	the
	     matrix B.

	     On	exit, if INFO <= N, the	part of	B containing the matrix	is
	     overwritten by the	triangular factor U or L from the Cholesky
	     factorization B = U**H*U or B = L*L**H.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     W	     (output) DOUBLE PRECISION array, dimension	(N)
	     If	INFO = 0, the eigenvalues in ascending order.

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The length	of the array WORK.  LWORK >= max(1,2*N-1).  For
	     optimal efficiency, LWORK >= (NB+1)*N, where NB is	the blocksize
	     for ZHETRD	returned by ILAENV.

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (max(1, 3*N-2))

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
	     > 0:  ZPOTRF or ZHEEV returned an error code:
	     <=	N:  if INFO = i, ZHEEV failed to converge; i off-diagonal
	     elements of an intermediate tridiagonal form did not converge to
	     zero; > N:	  if INFO = N +	i, for 1 <= i <= N, then the leading
	     minor of order i of B is not positive definite.  The
	     factorization of B	could not be completed and no eigenvalues or
	     eigenvectors were computed.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
zhbgv IRIX a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x
chbgv IRIX a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x
dspgv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
sspgv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
dsygv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
ssygv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
ssbgv IRIX a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
dsbgv IRIX a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
zhegs2 IRIX reduce a complex Hermitian-definite generalized eigenproblem to standard form
zhegst IRIX reduce a complex Hermitian-definite generalized eigenproblem to standard form
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service