ZHBEV(3F) ZHBEV(3F)
ZHBEV - compute all the eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix A
SUBROUTINE ZHBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK,
INFO )
CHARACTER JOBZ, UPLO
INTEGER INFO, KD, LDAB, LDZ, N
DOUBLE PRECISION RWORK( * ), W( * )
COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
ZHBEV computes all the eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix A.
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U', or
the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) COMPLEX*16 array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The j-th
column of A is stored in the j-th column of the array AB as
follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,jkd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for
j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T are
returned in rows KD and KD+1 of AB, and if UPLO = 'L', the
diagonal and first subdiagonal of T are returned in the first two
rows of AB.
Page 1
ZHBEV(3F) ZHBEV(3F)
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z holding
the eigenvector associated with W(i). If JOBZ = 'N', then Z is
not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if JOBZ =
'V', LDZ >= max(1,N).
WORK (workspace) COMPLEX*16 array, dimension (N)
RWORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i offdiagonal
elements of an intermediate tridiagonal form did not
converge to zero.
ZHBEV(3F) ZHBEV(3F)
ZHBEV - compute all the eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix A
SUBROUTINE ZHBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK,
INFO )
CHARACTER JOBZ, UPLO
INTEGER INFO, KD, LDAB, LDZ, N
DOUBLE PRECISION RWORK( * ), W( * )
COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
ZHBEV computes all the eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix A.
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U', or
the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB (input/output) COMPLEX*16 array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The j-th
column of A is stored in the j-th column of the array AB as
follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,jkd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for
j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the first
superdiagonal and the diagonal of the tridiagonal matrix T are
returned in rows KD and KD+1 of AB, and if UPLO = 'L', the
diagonal and first subdiagonal of T are returned in the first two
rows of AB.
Page 1
ZHBEV(3F) ZHBEV(3F)
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z holding
the eigenvector associated with W(i). If JOBZ = 'N', then Z is
not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if JOBZ =
'V', LDZ >= max(1,N).
WORK (workspace) COMPLEX*16 array, dimension (N)
RWORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i offdiagonal
elements of an intermediate tridiagonal form did not
converge to zero.
PPPPaaaaggggeeee 2222 [ Back ]
|