*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/zgeev (3)              
Title
Content
Arch
Section
 

Contents


ZGEEV(3F)							     ZGEEV(3F)


NAME    [Toc]    [Back]

     ZGEEV - compute for an N-by-N complex nonsymmetric	matrix A, the
     eigenvalues and, optionally, the left and/or right	eigenvectors

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZGEEV( JOBVL, JOBVR, N,	A, LDA,	W, VL, LDVL, VR, LDVR, WORK,
		       LWORK, RWORK, INFO )

	 CHARACTER     JOBVL, JOBVR

	 INTEGER       INFO, LDA, LDVL,	LDVR, LWORK, N

	 DOUBLE	       PRECISION RWORK(	* )

	 COMPLEX*16    A( LDA, * ), VL(	LDVL, *	), VR( LDVR, * ), W( * ),
		       WORK( * )

PURPOSE    [Toc]    [Back]

     ZGEEV computes for	an N-by-N complex nonsymmetric matrix A, the
     eigenvalues and, optionally, the left and/or right	eigenvectors.

     The right eigenvector v(j)	of A satisfies
		      A	* v(j) = lambda(j) * v(j)
     where lambda(j) is	its eigenvalue.
     The left eigenvector u(j) of A satisfies
		   u(j)**H * A = lambda(j) * u(j)**H
     where u(j)**H denotes the conjugate transpose of u(j).

     The computed eigenvectors are normalized to have Euclidean	norm equal to
     1 and largest component real.

ARGUMENTS    [Toc]    [Back]

     JOBVL   (input) CHARACTER*1
	     = 'N': left eigenvectors of A are not computed;
	     = 'V': left eigenvectors of are computed.

     JOBVR   (input) CHARACTER*1
	     = 'N': right eigenvectors of A are	not computed;
	     = 'V': right eigenvectors of A are	computed.

     N	     (input) INTEGER
	     The order of the matrix A.	N >= 0.

     A	     (input/output) COMPLEX*16 array, dimension	(LDA,N)
	     On	entry, the N-by-N matrix A.  On	exit, A	has been overwritten.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).






									Page 1






ZGEEV(3F)							     ZGEEV(3F)



     W	     (output) COMPLEX*16 array,	dimension (N)
	     W contains	the computed eigenvalues.

     VL	     (output) COMPLEX*16 array,	dimension (LDVL,N)
	     If	JOBVL =	'V', the left eigenvectors u(j)	are stored one after
	     another in	the columns of VL, in the same order as	their
	     eigenvalues.  If JOBVL = 'N', VL is not referenced.  u(j) =
	     VL(:,j), the j-th column of VL.

     LDVL    (input) INTEGER
	     The leading dimension of the array	VL.  LDVL >= 1;	if JOBVL =
	     'V', LDVL >= N.

     VR	     (output) COMPLEX*16 array,	dimension (LDVR,N)
	     If	JOBVR =	'V', the right eigenvectors v(j) are stored one	after
	     another in	the columns of VR, in the same order as	their
	     eigenvalues.  If JOBVR = 'N', VR is not referenced.  v(j) =
	     VR(:,j), the j-th column of VR.

     LDVR    (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= 1;	if JOBVR =
	     'V', LDVR >= N.

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  LWORK >=	max(1,2*N).  For good
	     performance, LWORK	must generally be larger.

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (2*N)

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  if INFO = i,	the QR algorithm failed	to compute all the
	     eigenvalues, and no eigenvectors have been	computed; elements and
	     i+1:N of W	contain	eigenvalues which have converged.
ZGEEV(3F)							     ZGEEV(3F)


NAME    [Toc]    [Back]

     ZGEEV - compute for an N-by-N complex nonsymmetric	matrix A, the
     eigenvalues and, optionally, the left and/or right	eigenvectors

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	ZGEEV( JOBVL, JOBVR, N,	A, LDA,	W, VL, LDVL, VR, LDVR, WORK,
		       LWORK, RWORK, INFO )

	 CHARACTER     JOBVL, JOBVR

	 INTEGER       INFO, LDA, LDVL,	LDVR, LWORK, N

	 DOUBLE	       PRECISION RWORK(	* )

	 COMPLEX*16    A( LDA, * ), VL(	LDVL, *	), VR( LDVR, * ), W( * ),
		       WORK( * )

PURPOSE    [Toc]    [Back]

     ZGEEV computes for	an N-by-N complex nonsymmetric matrix A, the
     eigenvalues and, optionally, the left and/or right	eigenvectors.

     The right eigenvector v(j)	of A satisfies
		      A	* v(j) = lambda(j) * v(j)
     where lambda(j) is	its eigenvalue.
     The left eigenvector u(j) of A satisfies
		   u(j)**H * A = lambda(j) * u(j)**H
     where u(j)**H denotes the conjugate transpose of u(j).

     The computed eigenvectors are normalized to have Euclidean	norm equal to
     1 and largest component real.

ARGUMENTS    [Toc]    [Back]

     JOBVL   (input) CHARACTER*1
	     = 'N': left eigenvectors of A are not computed;
	     = 'V': left eigenvectors of are computed.

     JOBVR   (input) CHARACTER*1
	     = 'N': right eigenvectors of A are	not computed;
	     = 'V': right eigenvectors of A are	computed.

     N	     (input) INTEGER
	     The order of the matrix A.	N >= 0.

     A	     (input/output) COMPLEX*16 array, dimension	(LDA,N)
	     On	entry, the N-by-N matrix A.  On	exit, A	has been overwritten.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).






									Page 1






ZGEEV(3F)							     ZGEEV(3F)



     W	     (output) COMPLEX*16 array,	dimension (N)
	     W contains	the computed eigenvalues.

     VL	     (output) COMPLEX*16 array,	dimension (LDVL,N)
	     If	JOBVL =	'V', the left eigenvectors u(j)	are stored one after
	     another in	the columns of VL, in the same order as	their
	     eigenvalues.  If JOBVL = 'N', VL is not referenced.  u(j) =
	     VL(:,j), the j-th column of VL.

     LDVL    (input) INTEGER
	     The leading dimension of the array	VL.  LDVL >= 1;	if JOBVL =
	     'V', LDVL >= N.

     VR	     (output) COMPLEX*16 array,	dimension (LDVR,N)
	     If	JOBVR =	'V', the right eigenvectors v(j) are stored one	after
	     another in	the columns of VR, in the same order as	their
	     eigenvalues.  If JOBVR = 'N', VR is not referenced.  v(j) =
	     VR(:,j), the j-th column of VR.

     LDVR    (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= 1;	if JOBVR =
	     'V', LDVR >= N.

     WORK    (workspace/output)	COMPLEX*16 array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  LWORK >=	max(1,2*N).  For good
	     performance, LWORK	must generally be larger.

     RWORK   (workspace) DOUBLE	PRECISION array, dimension (2*N)

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  if INFO = i,	the QR algorithm failed	to compute all the
	     eigenvalues, and no eigenvectors have been	computed; elements and
	     i+1:N of W	contain	eigenvalues which have converged.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
dgeevx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigen
dgeev IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigen
sgeevx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigen
sgeev IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigen
zgeesx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
cgeesx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
zgees IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
cgees IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
sgees IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
sgeesx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service