*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/clagtm (3)              
Title
Content
Arch
Section
 

Contents


CLAGTM(3F)							    CLAGTM(3F)


NAME    [Toc]    [Back]

     CLAGTM - perform a	matrix-vector product of the form   B := alpha * A * X
     + beta * B	 where A is a tridiagonal matrix of order N, B and X are N by
     NRHS matrices, and	alpha and beta are real	scalars, each of which may be
     0., 1., or	-1

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLAGTM(	TRANS, N, NRHS,	ALPHA, DL, D, DU, X, LDX, BETA,	B, LDB
			)

	 CHARACTER	TRANS

	 INTEGER	LDB, LDX, N, NRHS

	 REAL		ALPHA, BETA

	 COMPLEX	B( LDB,	* ), D(	* ), DL( * ), DU( * ), X( LDX, * )

PURPOSE    [Toc]    [Back]

     CLAGTM performs a matrix-vector product of	the form

ARGUMENTS    [Toc]    [Back]

     TRANS   (input) CHARACTER
	     Specifies the operation applied to	A.  = 'N':  No transpose, B :=
	     alpha * A * X + beta * B
	     = 'T':  Transpose,	   B :=	alpha *	A**T * X + beta	* B
	     = 'C':  Conjugate transpose, B := alpha * A**H * X	+ beta * B

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrices X and	B.

     ALPHA   (input) REAL
	     The scalar	alpha.	ALPHA must be 0., 1., or -1.; otherwise, it is
	     assumed to	be 0.

     DL	     (input) COMPLEX array, dimension (N-1)
	     The (n-1) sub-diagonal elements of	T.

     D	     (input) COMPLEX array, dimension (N)
	     The diagonal elements of T.

     DU	     (input) COMPLEX array, dimension (N-1)
	     The (n-1) super-diagonal elements of T.

     X	     (input) COMPLEX array, dimension (LDX,NRHS)
	     The N by NRHS matrix X.  LDX     (input) INTEGER The leading
	     dimension of the array X.	LDX >= max(N,1).



									Page 1






CLAGTM(3F)							    CLAGTM(3F)



     BETA    (input) REAL
	     The scalar	beta.  BETA must be 0.,	1., or -1.; otherwise, it is
	     assumed to	be 1.

     B	     (input/output) COMPLEX array, dimension (LDB,NRHS)
	     On	entry, the N by	NRHS matrix B.	On exit, B is overwritten by
	     the matrix	expression B :=	alpha *	A * X +	beta * B.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(N,1).
CLAGTM(3F)							    CLAGTM(3F)


NAME    [Toc]    [Back]

     CLAGTM - perform a	matrix-vector product of the form   B := alpha * A * X
     + beta * B	 where A is a tridiagonal matrix of order N, B and X are N by
     NRHS matrices, and	alpha and beta are real	scalars, each of which may be
     0., 1., or	-1

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLAGTM(	TRANS, N, NRHS,	ALPHA, DL, D, DU, X, LDX, BETA,	B, LDB
			)

	 CHARACTER	TRANS

	 INTEGER	LDB, LDX, N, NRHS

	 REAL		ALPHA, BETA

	 COMPLEX	B( LDB,	* ), D(	* ), DL( * ), DU( * ), X( LDX, * )

PURPOSE    [Toc]    [Back]

     CLAGTM performs a matrix-vector product of	the form

ARGUMENTS    [Toc]    [Back]

     TRANS   (input) CHARACTER
	     Specifies the operation applied to	A.  = 'N':  No transpose, B :=
	     alpha * A * X + beta * B
	     = 'T':  Transpose,	   B :=	alpha *	A**T * X + beta	* B
	     = 'C':  Conjugate transpose, B := alpha * A**H * X	+ beta * B

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrices X and	B.

     ALPHA   (input) REAL
	     The scalar	alpha.	ALPHA must be 0., 1., or -1.; otherwise, it is
	     assumed to	be 0.

     DL	     (input) COMPLEX array, dimension (N-1)
	     The (n-1) sub-diagonal elements of	T.

     D	     (input) COMPLEX array, dimension (N)
	     The diagonal elements of T.

     DU	     (input) COMPLEX array, dimension (N-1)
	     The (n-1) super-diagonal elements of T.

     X	     (input) COMPLEX array, dimension (LDX,NRHS)
	     The N by NRHS matrix X.  LDX     (input) INTEGER The leading
	     dimension of the array X.	LDX >= max(N,1).



									Page 1






CLAGTM(3F)							    CLAGTM(3F)



     BETA    (input) REAL
	     The scalar	beta.  BETA must be 0.,	1., or -1.; otherwise, it is
	     assumed to	be 1.

     B	     (input/output) COMPLEX array, dimension (LDB,NRHS)
	     On	entry, the N by	NRHS matrix B.	On exit, B is overwritten by
	     the matrix	expression B :=	alpha *	A * X +	beta * B.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(N,1).


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
gemv IRIX BLAS Level Two Matrix-Vector Product FORTRAN 77 SYNOPSIS subroutine dgemv( trans,m,n,alpha,a,lda,x,incx,beta,y
gbmv IRIX BLAS Level Two Matrix-Vector Product FORTRAN 77 SYNOPSIS subroutine dgbmv( trans,m,n,kl,ku,alpha,a,lda,x,incx,
slaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
dlaset IRIX initialize an m-by-n matrix A to BETA on the diagonal and ALPHA on the offdiagonals
gemm IRIX BLAS level three Matrix Product FORTRAN 77 SYNOPSIS subroutine dgemm( transa,transb,m,n,k,alpha,a,lda,b,ldb,be
chptrd IRIX reduce a complex Hermitian matrix A stored in packed form to real symmetric tridiagonal form T by a unitary si
zhptrd IRIX reduce a complex Hermitian matrix A stored in packed form to real symmetric tridiagonal form T by a unitary si
symm IRIX BLAS level three Symmetric Matrix Product FORTRAN 77 SYNOPSIS subroutine dsymm( side,uplo,m,n,alpha,a,lda,b,ld
hemm IRIX BLAS level three Hermitian Matrix Product FORTRAN 77 SYNOPSIS subroutine zhemm( side,uplo,m,n,alpha,a,lda,b,ld
trmm IRIX BLAS level three Matrix Product FORTRAN 77 SYNOPSIS subroutine dtrmm( side, uplo, transa, diag, m, n, alpha, a
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service