*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/claed0 (3)              
Title
Content
Arch
Section
 

Contents


CLAED0(3F)							    CLAED0(3F)


NAME    [Toc]    [Back]

     CLAED0 - the divide and conquer method, CLAED0 computes all eigenvalues
     of	a symmetric tridiagonal	matrix which is	one diagonal block of those
     from reducing a dense or band Hermitian matrix and	corresponding
     eigenvectors of the dense or band matrix

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLAED0(	QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK,
			INFO )

	 INTEGER	INFO, LDQ, LDQS, N, QSIZ

	 INTEGER	IWORK( * )

	 REAL		D( * ),	E( * ),	RWORK( * )

	 COMPLEX	Q( LDQ,	* ), QSTORE( LDQS, * )

PURPOSE    [Toc]    [Back]

     Using the divide and conquer method, CLAED0 computes all eigenvalues of a
     symmetric tridiagonal matrix which	is one diagonal	block of those from
     reducing a	dense or band Hermitian	matrix and corresponding eigenvectors
     of	the dense or band matrix.

ARGUMENTS    [Toc]    [Back]

     QSIZ   (input) INTEGER
	    The	dimension of the unitary matrix	used to	reduce the full	matrix
	    to tridiagonal form.  QSIZ >= N if ICOMPQ =	1.

     N	    (input) INTEGER
	    The	dimension of the symmetric tridiagonal matrix.	N >= 0.

     D	    (input/output) REAL	array, dimension (N)
	    On entry, the diagonal elements of the tridiagonal matrix.	On
	    exit, the eigenvalues in ascending order.

     E	    (input/output) REAL	array, dimension (N-1)
	    On entry, the off-diagonal elements	of the tridiagonal matrix.  On
	    exit, E has	been destroyed.

     Q	    (input/output) COMPLEX array, dimension (LDQ,N)
	    On entry, Q	must contain an	QSIZ x N matrix	whose columns
	    unitarily orthonormal. It is a part	of the unitary matrix that
	    reduces the	full dense Hermitian matrix to a (reducible) symmetric
	    tridiagonal	matrix.

     LDQ    (input) INTEGER
	    The	leading	dimension of the array Q.  LDQ >= max(1,N).






									Page 1






CLAED0(3F)							    CLAED0(3F)



     IWORK  (workspace)	INTEGER	array,
	    the	dimension of IWORK must	be at least 6 +	6*N + 5*N*lg N ( lg( N
	    ) =	smallest integer k such	that 2^k >= N )

     RWORK  (workspace)	REAL array,
	    dimension (1 + 3*N + 2*N*lg	N + 3*N**2) ( lg( N ) =	smallest
	    integer k such that	2^k >= N )

	    QSTORE (workspace) COMPLEX array, dimension	(LDQS, N) Used to
	    store parts	of the eigenvector matrix when the updating matrix
	    multiplies take place.

     LDQS   (input) INTEGER
	    The	leading	dimension of the array QSTORE.	LDQS >=	max(1,N).

     INFO   (output) INTEGER
	    = 0:  successful exit.
	    < 0:  if INFO = -i,	the i-th argument had an illegal value.
	    > 0:  The algorithm	failed to compute an eigenvalue	while working
	    on the submatrix lying in rows and columns INFO/(N+1) through
	    mod(INFO,N+1).
CLAED0(3F)							    CLAED0(3F)


NAME    [Toc]    [Back]

     CLAED0 - the divide and conquer method, CLAED0 computes all eigenvalues
     of	a symmetric tridiagonal	matrix which is	one diagonal block of those
     from reducing a dense or band Hermitian matrix and	corresponding
     eigenvectors of the dense or band matrix

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLAED0(	QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK,
			INFO )

	 INTEGER	INFO, LDQ, LDQS, N, QSIZ

	 INTEGER	IWORK( * )

	 REAL		D( * ),	E( * ),	RWORK( * )

	 COMPLEX	Q( LDQ,	* ), QSTORE( LDQS, * )

PURPOSE    [Toc]    [Back]

     Using the divide and conquer method, CLAED0 computes all eigenvalues of a
     symmetric tridiagonal matrix which	is one diagonal	block of those from
     reducing a	dense or band Hermitian	matrix and corresponding eigenvectors
     of	the dense or band matrix.

ARGUMENTS    [Toc]    [Back]

     QSIZ   (input) INTEGER
	    The	dimension of the unitary matrix	used to	reduce the full	matrix
	    to tridiagonal form.  QSIZ >= N if ICOMPQ =	1.

     N	    (input) INTEGER
	    The	dimension of the symmetric tridiagonal matrix.	N >= 0.

     D	    (input/output) REAL	array, dimension (N)
	    On entry, the diagonal elements of the tridiagonal matrix.	On
	    exit, the eigenvalues in ascending order.

     E	    (input/output) REAL	array, dimension (N-1)
	    On entry, the off-diagonal elements	of the tridiagonal matrix.  On
	    exit, E has	been destroyed.

     Q	    (input/output) COMPLEX array, dimension (LDQ,N)
	    On entry, Q	must contain an	QSIZ x N matrix	whose columns
	    unitarily orthonormal. It is a part	of the unitary matrix that
	    reduces the	full dense Hermitian matrix to a (reducible) symmetric
	    tridiagonal	matrix.

     LDQ    (input) INTEGER
	    The	leading	dimension of the array Q.  LDQ >= max(1,N).






									Page 1






CLAED0(3F)							    CLAED0(3F)



     IWORK  (workspace)	INTEGER	array,
	    the	dimension of IWORK must	be at least 6 +	6*N + 5*N*lg N ( lg( N
	    ) =	smallest integer k such	that 2^k >= N )

     RWORK  (workspace)	REAL array,
	    dimension (1 + 3*N + 2*N*lg	N + 3*N**2) ( lg( N ) =	smallest
	    integer k such that	2^k >= N )

	    QSTORE (workspace) COMPLEX array, dimension	(LDQS, N) Used to
	    store parts	of the eigenvector matrix when the updating matrix
	    multiplies take place.

     LDQS   (input) INTEGER
	    The	leading	dimension of the array QSTORE.	LDQS >=	max(1,N).

     INFO   (output) INTEGER
	    = 0:  successful exit.
	    < 0:  if INFO = -i,	the i-th argument had an illegal value.
	    > 0:  The algorithm	failed to compute an eigenvalue	while working
	    on the submatrix lying in rows and columns INFO/(N+1) through
	    mod(INFO,N+1).


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
zlaed0 IRIX the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one
dlaed0 IRIX compute all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and
slaed0 IRIX compute all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and
sstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
zstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
dstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
cstedc IRIX compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and c
TQL1 IRIX EISPACK routine. This subroutine finds the eigenvalues of a SYMMETRIC TRIDIAGONAL matrix by the QL method.
dstebz IRIX compute the eigenvalues of a symmetric tridiagonal matrix T
sstebz IRIX compute the eigenvalues of a symmetric tridiagonal matrix T
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service