*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/clacpy (3)              
Title
Content
Arch
Section
 

Contents


CLACPY(3F)							    CLACPY(3F)


NAME    [Toc]    [Back]

     CLACPY - copie all	or part	of a two-dimensional matrix A to another
     matrix B

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLACPY(	UPLO, M, N, A, LDA, B, LDB )

	 CHARACTER	UPLO

	 INTEGER	LDA, LDB, M, N

	 COMPLEX	A( LDA,	* ), B(	LDB, * )

PURPOSE    [Toc]    [Back]

     CLACPY copies all or part of a two-dimensional matrix A to	another	matrix
     B.

ARGUMENTS    [Toc]    [Back]

     UPLO    (input) CHARACTER*1
	     Specifies the part	of the matrix A	to be copied to	B.  = 'U':
	     Upper triangular part
	     = 'L':	 Lower triangular part
	     Otherwise:	 All of	the matrix A

     M	     (input) INTEGER
	     The number	of rows	of the matrix A.  M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix A.  N >= 0.

     A	     (input) COMPLEX array, dimension (LDA,N)
	     The m by n	matrix A.  If UPLO = 'U', only the upper trapezium is
	     accessed; if UPLO = 'L', only the lower trapezium is accessed.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).

     B	     (output) COMPLEX array, dimension (LDB,N)
	     On	exit, B	= A in the locations specified by UPLO.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,M).
CLACPY(3F)							    CLACPY(3F)


NAME    [Toc]    [Back]

     CLACPY - copie all	or part	of a two-dimensional matrix A to another
     matrix B

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CLACPY(	UPLO, M, N, A, LDA, B, LDB )

	 CHARACTER	UPLO

	 INTEGER	LDA, LDB, M, N

	 COMPLEX	A( LDA,	* ), B(	LDB, * )

PURPOSE    [Toc]    [Back]

     CLACPY copies all or part of a two-dimensional matrix A to	another	matrix
     B.

ARGUMENTS    [Toc]    [Back]

     UPLO    (input) CHARACTER*1
	     Specifies the part	of the matrix A	to be copied to	B.  = 'U':
	     Upper triangular part
	     = 'L':	 Lower triangular part
	     Otherwise:	 All of	the matrix A

     M	     (input) INTEGER
	     The number	of rows	of the matrix A.  M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix A.  N >= 0.

     A	     (input) COMPLEX array, dimension (LDA,N)
	     The m by n	matrix A.  If UPLO = 'U', only the upper trapezium is
	     accessed; if UPLO = 'L', only the lower trapezium is accessed.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,M).

     B	     (output) COMPLEX array, dimension (LDB,N)
	     On	exit, B	= A in the locations specified by UPLO.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,M).


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
dlagtm IRIX perform a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of o
slagtm IRIX perform a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of o
clagtm IRIX perform a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of o
zlagtm IRIX perform a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of o
strsna IRIX and/or right eigenvectors of a real upper quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q orthogon
dtrsna IRIX and/or right eigenvectors of a real upper quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q orthogon
CGECO IRIX CGECO factors a complex matrix by Gaussian elimination and estimates the condition of the matrix. If RCOND is
SGECO IRIX SGECO factors a real matrix by Gaussian elimination and estimates the condition of the matrix. If RCOND is not
DGECO IRIX DGECO factors a double precision matrix by Gaussian elimination and estimates the condition of the matrix. If
CGBCO IRIX CGBCO factors a complex band matrix by Gaussian elimination and estimates the condition of the matrix. If RCON
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service