*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/cheev (3)              
Title
Content
Arch
Section
 

Contents


CHEEV(3F)							     CHEEV(3F)


NAME    [Toc]    [Back]

     CHEEV - compute all eigenvalues and, optionally, eigenvectors of a
     complex Hermitian matrix A

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )

	 CHARACTER     JOBZ, UPLO

	 INTEGER       INFO, LDA, LWORK, N

	 REAL	       RWORK( *	), W( *	)

	 COMPLEX       A( LDA, * ), WORK( * )

PURPOSE    [Toc]    [Back]

     CHEEV computes all	eigenvalues and, optionally, eigenvectors of a complex
     Hermitian matrix A.

ARGUMENTS    [Toc]    [Back]

     JOBZ    (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only;
	     = 'V':  Compute eigenvalues and eigenvectors.

     UPLO    (input) CHARACTER*1
	     = 'U':  Upper triangle of A is stored;
	     = 'L':  Lower triangle of A is stored.

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     A	     (input/output) COMPLEX array, dimension (LDA, N)
	     On	entry, the Hermitian matrix A.	If UPLO	= 'U', the leading Nby-N
 upper	triangular part	of A contains the upper	triangular
	     part of the matrix	A.  If UPLO = 'L', the leading N-by-N lower
	     triangular	part of	A contains the lower triangular	part of	the
	     matrix A.	On exit, if JOBZ = 'V',	then if	INFO = 0, A contains
	     the orthonormal eigenvectors of the matrix	A.  If JOBZ = 'N',
	     then on exit the lower triangle (if UPLO='L') or the upper
	     triangle (if UPLO='U') of A, including the	diagonal, is
	     destroyed.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     W	     (output) REAL array, dimension (N)
	     If	INFO = 0, the eigenvalues in ascending order.

     WORK    (workspace/output)	COMPLEX	array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.




									Page 1






CHEEV(3F)							     CHEEV(3F)



     LWORK   (input) INTEGER
	     The length	of the array WORK.  LWORK >= max(1,2*N-1).  For
	     optimal efficiency, LWORK >= (NB+1)*N, where NB is	the blocksize
	     for CHETRD	returned by ILAENV.

     RWORK   (workspace) REAL array, dimension (max(1, 3*N-2))

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
	     > 0:  if INFO = i,	the algorithm failed to	converge; i offdiagonal
 elements of an intermediate tridiagonal form did not
	     converge to zero.
CHEEV(3F)							     CHEEV(3F)


NAME    [Toc]    [Back]

     CHEEV - compute all eigenvalues and, optionally, eigenvectors of a
     complex Hermitian matrix A

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )

	 CHARACTER     JOBZ, UPLO

	 INTEGER       INFO, LDA, LWORK, N

	 REAL	       RWORK( *	), W( *	)

	 COMPLEX       A( LDA, * ), WORK( * )

PURPOSE    [Toc]    [Back]

     CHEEV computes all	eigenvalues and, optionally, eigenvectors of a complex
     Hermitian matrix A.

ARGUMENTS    [Toc]    [Back]

     JOBZ    (input) CHARACTER*1
	     = 'N':  Compute eigenvalues only;
	     = 'V':  Compute eigenvalues and eigenvectors.

     UPLO    (input) CHARACTER*1
	     = 'U':  Upper triangle of A is stored;
	     = 'L':  Lower triangle of A is stored.

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     A	     (input/output) COMPLEX array, dimension (LDA, N)
	     On	entry, the Hermitian matrix A.	If UPLO	= 'U', the leading Nby-N
 upper	triangular part	of A contains the upper	triangular
	     part of the matrix	A.  If UPLO = 'L', the leading N-by-N lower
	     triangular	part of	A contains the lower triangular	part of	the
	     matrix A.	On exit, if JOBZ = 'V',	then if	INFO = 0, A contains
	     the orthonormal eigenvectors of the matrix	A.  If JOBZ = 'N',
	     then on exit the lower triangle (if UPLO='L') or the upper
	     triangle (if UPLO='U') of A, including the	diagonal, is
	     destroyed.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     W	     (output) REAL array, dimension (N)
	     If	INFO = 0, the eigenvalues in ascending order.

     WORK    (workspace/output)	COMPLEX	array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.




									Page 1






CHEEV(3F)							     CHEEV(3F)



     LWORK   (input) INTEGER
	     The length	of the array WORK.  LWORK >= max(1,2*N-1).  For
	     optimal efficiency, LWORK >= (NB+1)*N, where NB is	the blocksize
	     for CHETRD	returned by ILAENV.

     RWORK   (workspace) REAL array, dimension (max(1, 3*N-2))

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
	     > 0:  if INFO = i,	the algorithm failed to	converge; i offdiagonal
 elements of an intermediate tridiagonal form did not
	     converge to zero.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
chbevd IRIX compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
zhbev IRIX compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
cheevx IRIX compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A
chbev IRIX compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
zheevx IRIX compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A
zhbevd IRIX compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
chpev IRIX compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage
chbevx IRIX compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
chpevd IRIX compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage
zhbevx IRIX compute selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service