*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/cgetrs (3)              
Title
Content
Arch
Section
 

Contents


CGETRS(3F)							    CGETRS(3F)


NAME    [Toc]    [Back]

     CGETRS - solve a system of	linear equations  A * X	= B, A**T * X =	B, or
     A**H * X =	B with a general N-by-N	matrix A using the LU factorization
     computed by CGETRF

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CGETRS(	TRANS, N, NRHS,	A, LDA,	IPIV, B, LDB, INFO )

	 CHARACTER	TRANS

	 INTEGER	INFO, LDA, LDB,	N, NRHS

	 INTEGER	IPIV( *	)

	 COMPLEX	A( LDA,	* ), B(	LDB, * )

PURPOSE    [Toc]    [Back]

     CGETRS solves a system of linear equations
	A * X =	B,  A**T * X = B,  or  A**H * X	= B with a general N-by-N
     matrix A using the	LU factorization computed by CGETRF.

ARGUMENTS    [Toc]    [Back]

     TRANS   (input) CHARACTER*1
	     Specifies the form	of the system of equations:
	     = 'N':  A * X = B	   (No transpose)
	     = 'T':  A**T * X =	B  (Transpose)
	     = 'C':  A**H * X =	B  (Conjugate transpose)

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrix	B.  NRHS >= 0.

     A	     (input) COMPLEX array, dimension (LDA,N)
	     The factors L and U from the factorization	A = P*L*U as computed
	     by	CGETRF.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     IPIV    (input) INTEGER array, dimension (N)
	     The pivot indices from CGETRF; for	1<=i<=N, row i of the matrix
	     was interchanged with row IPIV(i).

     B	     (input/output) COMPLEX array, dimension (LDB,NRHS)
	     On	entry, the right hand side matrix B.  On exit, the solution
	     matrix X.





									Page 1






CGETRS(3F)							    CGETRS(3F)



     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value
CGETRS(3F)							    CGETRS(3F)


NAME    [Toc]    [Back]

     CGETRS - solve a system of	linear equations  A * X	= B, A**T * X =	B, or
     A**H * X =	B with a general N-by-N	matrix A using the LU factorization
     computed by CGETRF

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	CGETRS(	TRANS, N, NRHS,	A, LDA,	IPIV, B, LDB, INFO )

	 CHARACTER	TRANS

	 INTEGER	INFO, LDA, LDB,	N, NRHS

	 INTEGER	IPIV( *	)

	 COMPLEX	A( LDA,	* ), B(	LDB, * )

PURPOSE    [Toc]    [Back]

     CGETRS solves a system of linear equations
	A * X =	B,  A**T * X = B,  or  A**H * X	= B with a general N-by-N
     matrix A using the	LU factorization computed by CGETRF.

ARGUMENTS    [Toc]    [Back]

     TRANS   (input) CHARACTER*1
	     Specifies the form	of the system of equations:
	     = 'N':  A * X = B	   (No transpose)
	     = 'T':  A**T * X =	B  (Transpose)
	     = 'C':  A**H * X =	B  (Conjugate transpose)

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrix	B.  NRHS >= 0.

     A	     (input) COMPLEX array, dimension (LDA,N)
	     The factors L and U from the factorization	A = P*L*U as computed
	     by	CGETRF.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     IPIV    (input) INTEGER array, dimension (N)
	     The pivot indices from CGETRF; for	1<=i<=N, row i of the matrix
	     was interchanged with row IPIV(i).

     B	     (input/output) COMPLEX array, dimension (LDB,NRHS)
	     On	entry, the right hand side matrix B.  On exit, the solution
	     matrix X.





									Page 1






CGETRS(3F)							    CGETRS(3F)



     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
cgetri IRIX compute the inverse of a matrix using the LU factorization computed by CGETRF
cgecon IRIX complex matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by CGETRF
dgetrs IRIX a general N-by-N matrix A using the LU factorization computed by DGETRF
zgetrs IRIX A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF
sgetrs IRIX a general N-by-N matrix A using the LU factorization computed by SGETRF
dgetri IRIX compute the inverse of a matrix using the LU factorization computed by DGETRF
zgetri IRIX compute the inverse of a matrix using the LU factorization computed by ZGETRF
sgetri IRIX compute the inverse of a matrix using the LU factorization computed by SGETRF
zgebak IRIX form the right or left eigenvectors of a complex general matrix by backward transformation on the computed eig
cgebak IRIX form the right or left eigenvectors of a complex general matrix by backward transformation on the computed eig
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service