*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/RGG (3)              
Title
Content
Arch
Section
 

Contents


_RGG(3F)							      _RGG(3F)


NAME    [Toc]    [Back]

     RGG, SRGG	-  EISPACK routine.  This subroutine calls the recommended
     sequence of subroutines from the eigensystem subroutine package (EISPACK)
     to	find the eigenvalues and eigenvectors (if desired) for the REAL
     GENERAL GENERALIZED eigenproblem  Ax = (LAMBDA)Bx.

SYNOPSYS    [Toc]    [Back]

	  subroutine  rgg(nm, n, a, b, alfr, alfi, beta, matz, z, ierr)
	  integer	   nm, n, matz,	ierr
	  double precision a(nm,n),b(nm,n),alfr(n),alfi(n),beta(n),z(nm,n)

	  subroutine srgg(nm, n, a, b, alfr, alfi, beta, matz, z, ierr)
	  integer	   nm, n, matz,	ierr
	  real		   a(nm,n),b(nm,n),alfr(n),alfi(n),beta(n),z(nm,n)


DESCRIPTION    [Toc]    [Back]

     On	Input

     NM	must be	set to the row dimension of the	two-dimensional	array
     parameters	as declared in the calling program dimension statement.

     N is the order of the matrices  A	and  B.

     A contains	a real general matrix.

     B contains	a real general matrix.

     MATZ is an	integer	variable set equal to zero if only eigenvalues are
     desired.  Otherwise it is set to any non-zero integer for both
     eigenvalues and eigenvectors.  On Output

     ALFR and  ALFI  contain the real and imaginary parts, respectively, of
     the numerators of the eigenvalues.

     BETA contains the denominators of the eigenvalues,	which are thus given
     by	the ratios  (ALFR+I*ALFI)/BETA.	 Complex conjugate pairs of
     eigenvalues appear	consecutively with the eigenvalue having the positive
     imaginary part first.

     Z contains	the real and imaginary parts of	the eigenvectors if MATZ is
     not zero.	If the J-th eigenvalue is real,	the J-th column	of  Z
     contains its eigenvector.	If the J-th eigenvalue is complex with
     positive imaginary	part, the J-th and (J+1)-th columns of	Z  contain the
     real and imaginary	parts of its eigenvector.  The conjugate of this
     vector is the eigenvector for the conjugate eigenvalue.

     IERR is an	integer	output variable	set equal to an	error completion code
     described in section 2B of	the documentation.  The	normal completion code
     is	zero.  Questions and comments should be	directed to B. S. Garbow,



									Page 1






_RGG(3F)							      _RGG(3F)



     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
REBAKB IRIX EISPACK routine. This subroutine forms the eigenvectors of a generalized SYMMETRIC eigensystem by back transfo
REBAK IRIX EISPACK routine. This subroutine forms the eigenvectors of a generalized SYMMETRIC eigensystem by back transfo
QZVAL IRIX EISPACK routine. This subroutine is the third step of
QZIT IRIX EISPACK routine. This subroutine is the second step of
TRED3 IRIX EISPACK routine. This subroutine reduces a REAL
IMTQLV IRIX EISPACK routine. This subroutine is a variant of IMTQL1.
CBAL IRIX EISPACK routine. This subroutine is a complex version of BALANCE.
BALANC IRIX EISPACK routine. This subroutine balances a REAL matrix and isolates eigenvalues whenever possible.
TINVIT IRIX EISPACK routine. This subroutine finds those eigenvectors of a TRIDIAGONAL SYMMETRIC matrix corresponding to s
TRIDIB IRIX EISPACK routine. This subroutine finds those eigenvalues of a TRIDIAGONAL SYMMETRIC matrix between specified b
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service