*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/REDUC2 (3)              
Title
Content
Arch
Section
 

Contents


_REDUC2(3F)							   _REDUC2(3F)


NAME    [Toc]    [Back]

     REDUC2, SREDUC2  -	 EISPACK routine.  This	subroutine reduces the
     generalized SYMMETRIC eigenproblems ABx=(LAMBDA)x OR BAy=(LAMBDA)y, where
     B is POSITIVE DEFINITE, to	the standard symmetric eigenproblem using the
     Cholesky factorization of B.

SYNOPSYS    [Toc]    [Back]

	  subroutine  reduc2(nm, n, a, b, dl, ierr)
	  integer	   nm, n, ierr
	  double precision a(nm,n), b(nm,n), dl(n)

	  subroutine sreduc2(nm, n, a, b, dl, ierr)
	  integer	   nm, n, ierr
	  real		   a(nm,n), b(nm,n), dl(n)


DESCRIPTION    [Toc]    [Back]

     On	Input

     NM	must be	set to the row dimension of two-dimensional array parameters
     as	declared in the	calling	program	dimension statement.

     N is the order of the matrices A and B.  If the Cholesky factor L of B is
     already available,	N should be prefixed with a minus sign.

     A AND B contain the real symmetric	input matrices.	 Only the full upper
     triangles of the matrices need be supplied.  If N is negative, the	strict
     lower triangle of B contains, instead, the	strict lower triangle of its
     Cholesky factor L.

     DL	contains, if N is negative, the	diagonal elements of L.	On Output

     A contains	in its full lower triangle the full lower triangle of the
     symmetric matrix derived from the reduction to the	standard form.	The
     strict upper triangle of A	is unaltered.

     B contains	in its strict lower triangle the strict	lower triangle of its
     Cholesky factor L.	 The full upper	triangle of B is unaltered.

     DL	contains the diagonal elements of L.

     IERR is set to Zero       for normal return, 7*N+1	     if	B is not
     positive definite.	 Questions and comments	should be directed to B. S.
     Garbow, APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
REDUC IRIX EISPACK routine. This subroutine reduces the generalized SYMMETRIC eigenproblem Ax=(LAMBDA)Bx, where B is POSI
dspgv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
ssygv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
sspgv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
dsygv IRIX a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(l
zhpgv IRIX a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x
chpgv IRIX a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x
zhegv IRIX a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x
chegv IRIX a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x
BANDR IRIX EISPACK routine. This subroutine reduces a REAL SYMMETRIC BAND matrix to a symmetric tridiagonal matrix using
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service