zero_copy, zero_copy_sockets
options ZERO_COPY_SOCKETS
The FreeBSD kernel includes a facility for eliminating data copies on
socket reads and writes.
This code is collectively known as the zero copy sockets code, because
during normal network I/O, data will not be copied by the CPU at all.
Rather it will be DMAed from the user's buffer to the NIC (for sends), or
DMAed from the NIC to a buffer that will then be given to the user
(receives).
The zero copy sockets code uses the standard socket read and write semantics,
and therefore has some limitations and restrictions that programmers
should be aware of when trying to take advantage of this functionality.
For sending data, there are no special requirements or capabilities that
the sending NIC must have. The data written to the socket, though, must
be at least a page in size and page aligned in order to be mapped into
the kernel. If it does not meet the page size and alignment constraints,
it will be copied into the kernel, as is normally the case with socket
I/O.
The user should be careful not to overwrite buffers that have been written
to the socket before the data has been freed by the kernel, and the
copy-on-write mapping cleared. If a buffer is overwritten before it has
been given up by the kernel, the data will be copied, and no savings in
CPU utilization and memory bandwidth utilization will be realized.
The socket(2) API does not really give the user any indication of when
his data has actually been sent over the wire, or when the data has been
freed from kernel buffers. For protocols like TCP, the data will be kept
around in the kernel until it has been acknowledged by the other side; it
must be kept until the acknowledgement is received in case retransmission
is required.
From an application standpoint, the best way to guarantee that the data
has been sent out over the wire and freed by the kernel (for TCP-based
sockets) is to set a socket buffer size (see the SO_SNDBUF socket option
in the setsockopt(2) man page) appropriate for the application and network
environment and then make sure you have sent out twice as much data
as the socket buffer size before reusing a buffer. For TCP, the send and
receive socket buffer sizes generally directly correspond to the TCP window
size.
For receiving data, in order to take advantage of the zero copy receive
code, the user must have a NIC that is configured for an MTU greater than
the architecture page size. (E.g., for alpha this would be 8KB, for
i386, it would be 4KB.) Additionally, in order for zero copy receive to
work, packet payloads must be at least a page in size and page aligned.
Achieving page aligned payloads requires a NIC that can split an incoming
packet into multiple buffers. It also generally requires some sort of
intelligence on the NIC to make sure that the payload starts in its own
buffer. This is called ``header splitting''. Currently the only NICs
with support for header splitting are Alteon Tigon 2 based boards running
slightly modified firmware. The FreeBSD ti(4) driver includes modified
firmware for Tigon 2 boards only. Header splitting code can be written,
however, for any NIC that allows putting received packets into multiple
buffers and that has enough programability to determine that the header
should go into one buffer and the payload into another.
You can also do a form of header splitting that does not require any NIC
modifications if your NIC is at least capable of splitting packets into
multiple buffers. This requires that you optimize the NIC driver for
your most common packet header size. If that size (ethernet + IP + TCP
headers) is generally 66 bytes, for instance, you would set the first
buffer in a set for a particular packet to be 66 bytes long, and then
subsequent buffers would be a page in size. For packets that have headers
that are exactly 66 bytes long, your payload will be page aligned.
The other requirement for zero copy receive to work is that the buffer
that is the destination for the data read from a socket must be at least
a page in size and page aligned.
Obviously the requirements for receive side zero copy are impossible to
meet without NIC hardware that is programmable enough to do header splitting
of some sort. Since most NICs are not that programmable, or their
manufacturers will not share the source code to their firmware, this
approach to zero copy receive is not widely useful.
There are other approaches, such as RDMA and TCP Offload, that may potentially
help alleviate the CPU overhead associated with copying data out
of the kernel. Most known techniques require some sort of support at the
NIC level to work, and describing such techniques is beyond the scope of
this manual page.
The zero copy send and zero copy receive code can be individually turned
off via the kern.ipc.zero_copy.send and kern.ipc.zero_copy.receive sysctl
variables respectively.
sendfile(2), socket(2), ti(4), jumbo(9)
The zero copy sockets code first appeared in FreeBSD 5.0, although it has
been in existence in patch form since at least mid-1999.
The zero copy sockets code was originally written by Andrew Gallatin
<[email protected]> and substantially modified and updated by Kenneth
Merry <[email protected]>.
FreeBSD 5.2.1 June 23, 2002 FreeBSD 5.2.1 [ Back ] |