networking -- introduction to networking facilities
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>
This section is a general introduction to the networking facilities
available in the system. Documentation in this part of section 4 is broken
up into three areas: protocol families (domains), protocols, and
network interfaces.
All network protocols are associated with a specific protocol family. A
protocol family provides basic services to the protocol implementation to
allow it to function within a specific network environment. These services
may include packet fragmentation and reassembly, routing, addressing,
and basic transport. A protocol family may support multiple methods
of addressing, though the current protocol implementations do not. A
protocol family is normally comprised of a number of protocols, one per
socket(2) type. It is not required that a protocol family support all
socket types. A protocol family may contain multiple protocols supporting
the same socket abstraction.
A protocol supports one of the socket abstractions detailed in socket(2).
A specific protocol may be accessed either by creating a socket of the
appropriate type and protocol family, or by requesting the protocol
explicitly when creating a socket. Protocols normally accept only one
type of address format, usually determined by the addressing structure
inherent in the design of the protocol family/network architecture. Certain
semantics of the basic socket abstractions are protocol specific.
All protocols are expected to support the basic model for their particular
socket type, but may, in addition, provide non-standard facilities or
extensions to a mechanism. For example, a protocol supporting the
SOCK_STREAM abstraction may allow more than one byte of out-of-band data
to be transmitted per out-of-band message.
A network interface is similar to a device interface. Network interfaces
comprise the lowest layer of the networking subsystem, interacting with
the actual transport hardware. An interface may support one or more protocol
families and/or address formats. The SYNOPSIS section of each network
interface entry gives a sample specification of the related drivers
for use in providing a system description to the config(8) program. The
DIAGNOSTICS section lists messages which may appear on the console and/or
in the system error log, /var/log/messages (see syslogd(8)), due to
errors in device operation.
The system currently supports the Internet protocols, the Xerox Network
Systems(tm) protocols, and some of the ISO OSI protocols. Raw socket
interfaces are provided to the IP protocol layer of the Internet, and to
the IDP protocol of Xerox NS. Consult the appropriate manual pages in
this section for more information regarding the support for each protocol
family.
Associated with each protocol family is an address format. All network
addresses adhere to a general structure, called a sockaddr, described
below. However, each protocol imposes finer and more specific structure,
generally renaming the variant, which is discussed in the protocol family
manual page alluded to above.
struct sockaddr {
u_char sa_len;
u_char sa_family;
char sa_data[14];
};
The field sa_len contains the total length of the structure, which may
exceed 16 bytes. The following address values for sa_family are known to
the system (and additional formats are defined for possible future implementation):
#define AF_UNIX 1 /* local to host (pipes, portals) */
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF_NS 6 /* Xerox NS protocols */
#define AF_CCITT 10 /* CCITT protocols, X.25 etc */
#define AF_HYLINK 15 /* NSC Hyperchannel */
#define AF_ISO 18 /* ISO protocols */
FreeBSD provides some packet routing facilities. The kernel maintains a
routing information database, which is used in selecting the appropriate
network interface when transmitting packets.
A user process (or possibly multiple co-operating processes) maintains
this database by sending messages over a special kind of socket. This
supplants fixed size ioctl(2) used in earlier releases.
This facility is described in route(4).
Each network interface in a system corresponds to a path through which
messages may be sent and received. A network interface usually has a
hardware device associated with it, though certain interfaces such as the
loopback interface, lo(4), do not.
The following ioctl(2) calls may be used to manipulate network interfaces.
The ioctl() is made on a socket (typically of type SOCK_DGRAM) in
the desired domain. Most of the requests supported in earlier releases
take an ifreq structure as its parameter. This structure has the form
struct ifreq {
#define IFNAMSIZ 16
char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags[2];
int ifru_metric;
int ifru_mtu;
int ifru_phys;
caddr_t ifru_data;
} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags[0] /* flags (low 16 bits) */
#define ifr_flagshigh ifr_ifru.ifru_flags[1] /* flags (high 16 bits) */
#define ifr_metric ifr_ifru.ifru_metric /* metric */
#define ifr_mtu ifr_ifru.ifru_mtu /* mtu */
#define ifr_phys ifr_ifru.ifru_phys /* physical wire */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */
};
Calls which are now deprecated are:
SIOCSIFADDR Set interface address for protocol family. Following the
address assignment, the ``initialization'' routine for
the interface is called.
SIOCSIFDSTADDR Set point to point address for protocol family and interface.
SIOCSIFBRDADDR Set broadcast address for protocol family and interface.
Ioctl() requests to obtain addresses and requests both to set and
retrieve other data are still fully supported and use the ifreq structure:
SIOCGIFADDR Get interface address for protocol family.
SIOCGIFDSTADDR Get point to point address for protocol family and interface.
SIOCGIFBRDADDR Get broadcast address for protocol family and interface.
SIOCSIFFLAGS Set interface flags field. If the interface is marked
down, any processes currently routing packets through the
interface are notified; some interfaces may be reset so
that incoming packets are no longer received. When
marked up again, the interface is reinitialized.
SIOCGIFFLAGS Get interface flags.
SIOCSIFMETRIC Set interface routing metric. The metric is used only by
user-level routers.
SIOCGIFMETRIC Get interface metric.
SIOCIFCREATE Attempt to create the specified interface. If the interface
name is given without a unit number the system will
attempt to create a new interface with an arbitrary unit
number. On successful return the ifr_name field will
contain the new interface name.
SIOCIFDESTROY Attempt to destroy the specified interface.
There are two requests that make use of a new structure:
SIOCAIFADDR An interface may have more than one address associated
with it in some protocols. This request provides a means
to add additional addresses (or modify characteristics of
the primary address if the default address for the
address family is specified). Rather than making separate
calls to set destination or broadcast addresses, or
network masks (now an integral feature of multiple protocols)
a separate structure is used to specify all three
facets simultaneously (see below). One would use a
slightly tailored version of this struct specific to each
family (replacing each sockaddr by one of the family-specific
type). Where the sockaddr itself is larger than
the default size, one needs to modify the ioctl() identifier
itself to include the total size, as described in
ioctl().
SIOCDIFADDR This requests deletes the specified address from the list
associated with an interface. It also uses the
ifaliasreq structure to allow for the possibility of protocols
allowing multiple masks or destination addresses,
and also adopts the convention that specification of the
default address means to delete the first address for the
interface belonging to the address family in which the
original socket was opened.
SIOCGIFCONF Get interface configuration list. This request takes an
ifconf structure (see below) as a value-result parameter.
The ifc_len field should be initially set to the size of
the buffer pointed to by ifc_buf. On return it will contain
the length, in bytes, of the configuration list.
SIOCIFGCLONERS Get list of clonable interfaces. This request takes an
if_clonereq structure (see below) as a value-result
parameter. The ifcr_count field should be set to the
number of IFNAMSIZ sized strings that can be fit in the
buffer pointed to by ifcr_buffer. On return, ifcr_total
will be set to the number of clonable interfaces and the
buffer pointed to by ifcr_buffer will be filled with the
names of clonable interfaces aligned on IFNAMSIZ boundaries.
/*
* Structure used in SIOCAIFCONF request.
*/
struct ifaliasreq {
char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */
struct sockaddr ifra_addr;
struct sockaddr ifra_broadaddr;
struct sockaddr ifra_mask;
};
/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/
struct ifconf {
int ifc_len; /* size of associated buffer */
union {
caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
};
/* Structure used in SIOCIFGCLONERS request. */
struct if_clonereq {
int ifcr_total; /* total cloners (out) */
int ifcr_count; /* room for this many in user buffer */
char *ifcr_buffer; /* buffer for cloner names */
};
ioctl(2), socket(2), intro(4), config(8), routed(8), ifnet(9)
The netintro manual appeared in 4.3BSD-Tahoe.
FreeBSD 5.2.1 November 30, 1993 FreeBSD 5.2.1 [ Back ] |